1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

StanとRでベイズ統計モデリング(アヒル本)をPythonにしてみる - 12.8 地図を使った空間構造

Last updated at Posted at 2018-08-21

実行環境

インポート

import numpy as np
from scipy import stats
import pandas as pd
from japanmap import pref_names, picture
import japanmap
import pystan
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib import cm
from matplotlib.figure import figaspect
import seaborn as sns
%matplotlib inline
from bokeh.io import output_notebook
from bokeh.resources import INLINE
from bokeh.plotting import figure, show
from bokeh.models import ColumnDataSource, LabelSet
from bokeh.models.tickers import FixedTicker
output_notebook(resources=INLINE)

データ読み込み

map_temperature = pd.read_csv('./data/data-map-temperature.txt')
map_neighbor = pd.read_csv('./data/data-map-neighbor.txt')
map_JIS = pd.read_csv('./data/data-map-JIS.txt', header=None)
map_JIS.columns = ('prefID', 'name')

12.8 地図を使った空間構造

data = dict(
    N=map_temperature.index.size,
    Y=map_temperature['Y'],
    I=map_neighbor.index.size,
    From=map_neighbor['From'],
    To=map_neighbor['To']
)

stanmodel = pystan.StanModel('./stan/model12-14.stan')
fit = stanmodel.sampling(data=data, seed=1234, init=lambda: dict(r=map_temperature['Y'], s_r=1, s_Y=0.1))
def draw_map(ax, temperatures):
    norm = mpl.colors.Normalize(vmin=9, vmax=19)
    sm = cm.ScalarMappable(norm=norm, cmap='binary')
    colors = {}
    for prefID, temperature in zip(map_temperature['prefID'], temperatures):
        r, g, b, a = sm.to_rgba(temperature, bytes=True)
        colors[prefID] = (int(r),) * 3
    ax.imshow(picture(colors))

_, (ax1, ax2) = plt.subplots(1, 2, figsize=figaspect(3/8))

draw_map(ax1, map_temperature['Y'])

ms = fit.extract()
est = ms['r'].mean(axis=0)
draw_map(ax2, est)

plt.show()

fig12-10.png

この終盤に来てのmatplotlib日本語化は心折れたので、bokehに逃げました。東京と静岡が重なっているのも見なかったことにしました。

probs = (2.5, 50, 97.5)
d_est = pd.DataFrame(np.percentile(ms['r'], probs, axis=0).T, columns=['p{}'.format(p) for p in probs])
d_est['x'] = map_temperature['Y']
d_all = pd.concat([map_JIS, d_est], axis=1)
d_all['diff'] = d_all['x'] - d_all['p50']
top3_diff = d_all.iloc[np.argsort(-np.abs(d_all['diff']))[:3]]

source = ColumnDataSource(d_all)
p = figure(x_range=(9, 24), y_range=(9, 24))
p.scatter(x='x', y='p50', source=source)
p.multi_line([(x, x) for x in d_all['x']], [(y1, y2) for y1, y2 in zip(d_all['p2.5'], d_all['p97.5'])])
p.line((9, 24), (9, 24), line_dash='dashed')
p.add_layout(LabelSet(x='x', y='p50', text='name', source=ColumnDataSource(top3_diff)))
p.xaxis.axis_label = 'Observed'
p.yaxis.axis_label = 'Predicted'
ticks = list(range(0, 26, 5))
p.xaxis.ticker = FixedTicker(ticks=ticks)
p.yaxis.ticker = FixedTicker(ticks=ticks)
show(p)

bokeh_plot.png

d_noise = map_temperature['Y'].values.reshape((1, -1)) - ms['r']

def get_map(col):
    kernel = stats.gaussian_kde(col)
    dens_x = np.linspace(col.min(), col.max(), kernel.n)
    dens_y = kernel.pdf(dens_x)
    mode_i = np.argmax(dens_y)
    mode_x = dens_x[mode_i]
    mode_y = dens_y[mode_i]
    return pd.Series([mode_x, mode_y], index=['X', 'Y'])

d_mode = pd.DataFrame(d_noise).apply(get_map).T
d_mode.columns = ('X', 'Y')
s_MAP = get_map(ms['s_Y'])['X']
plt.figure(figsize=figaspect(1))
ax = plt.axes()
sns.distplot(d_mode['X'], color='k', hist_kws=dict(facecolor='w', edgecolor='k'), kde_kws=dict(shade=True), ax=ax)
xmin, xmax = ax.get_xlim()
xx = np.linspace(xmin, xmax, 50)
ax.plot(xx, stats.norm.pdf(xx, loc=0, scale=s_MAP), color='k', linestyle='dashed')
plt.setp(ax, xlabel='value', ylabel='density', xlim=(xmin, xmax))
plt.show()

fig12-11-right.png

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?