1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

StanとRでベイズ統計モデリング(アヒル本)をPythonにしてみる - 12.1 状態空間モデルことはじめ

Last updated at Posted at 2018-08-20

実行環境

インポート

import numpy as np
import pandas as pd
import pystan
import matplotlib.pyplot as plt
from matplotlib.figure import figaspect
%matplotlib inline

データ読み込み

ss1 = pd.read_csv('./data/data-ss1.txt')

12.1 状態空間モデルことはじめ

plt.figure(figsize=figaspect(3/4))
ax = plt.axes()
ax.plot('X', 'Y', 'o-', data=ss1)
plt.setp(ax, xlabel='Time (Day)', ylabel='Y')
plt.show()

fig12-1.png

12.1.5 Stanで実装

T = ss1.index.size
data = dict(
    T=T,
    T_pred=3,
    Y=ss1['Y']
)
stanmodel = pystan.StanModel('./stan/model12-2.stan')
fit = stanmodel.sampling(data=data, pars=('mu_all', 's_mu', 's_Y'), iter=4000, thin=5, seed=1234)

12.1.6 推定結果の解釈

ms = fit.extract()

np.percentile(ms['s_mu'], (10, 50, 90))

array([0.29572894, 0.38844306, 0.50928656])

np.percentile(ms['s_Y'], (10, 50, 90))

array([0.03983209, 0.13265277, 0.26266297])

probs = (10, 25, 50, 75, 90)
d_est = pd.DataFrame(np.percentile(ms['mu_all'], (10, 25, 50, 75, 90), axis=0).T, columns=['p{}'.format(p) for p in probs])
d_est['x'] = d_est.index + 1

plt.figure(figsize=figaspect(3/4))
ax = plt.axes()

ax.plot('X', 'Y', 'o-', data=ss1, color='k')
ax.plot('x', 'p50', data=d_est, color='k')
ax.fill_between('x', 'p10', 'p90', data=d_est, color='k', alpha=0.2)
ax.fill_between('x', 'p25', 'p75', data=d_est, color='k', alpha=0.4)
ylim = (10, 14)
ax.vlines(T, ylim[0], ylim[1], linestyles='dashed')
plt.setp(ax, xlabel='Time (Day)', ylabel='Y', xlim=(1, 24), ylim=ylim)
plt.show()

fig12-3-left.png

12.1.7 状態の変化をなめらかにする

stanmodel = pystan.StanModel('./stan/model12-4.stan')
fit = stanmodel.sampling(data=data, pars=('mu_all', 's_mu', 's_Y'), seed=1234)
ms = fit.extract()

probs = (10, 25, 50, 75, 90)
d_est = pd.DataFrame(np.percentile(ms['mu_all'], (10, 25, 50, 75, 90), axis=0).T, columns=['p{}'.format(p) for p in probs])
d_est['x'] = d_est.index + 1

plt.figure(figsize=figaspect(3/4))
ax = plt.axes()

ax.plot('X', 'Y', 'o-', data=ss1, color='k')
ax.plot('x', 'p50', data=d_est, color='k')
ax.fill_between('x', 'p10', 'p90', data=d_est, color='k', alpha=0.2)
ax.fill_between('x', 'p25', 'p75', data=d_est, color='k', alpha=0.4)
ylim = (10, 14)
ax.vlines(T, ylim[0], ylim[1], linestyles='dashed')
plt.setp(ax, xlabel='Time (Day)', ylabel='Y', xlim=(1, 24), ylim=ylim)
plt.show()

fig12-3-right.png

1
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?