ms = fit.extract()
probs = (10, 25, 50, 75, 90)
_, (ax1, ax2) = plt.subplots(1, 2, figsize=figaspect(3/8), sharex=True)
d_est = pd.DataFrame(np.percentile(ms['mu'], probs, axis=0).T, columns=['p{}'.format(p) for p in probs])
d_est['x'] = d_est.index + 1
ax1.plot('X', 'Y', 'o-', data=ss2, color='k')
ax1.plot('x', 'p50', data=d_est, color='k')
ax1.fill_between('x', 'p10', 'p90', data=d_est, color='k', alpha=0.2)
ax1.fill_between('x', 'p25', 'p75', data=d_est, color='k', alpha=0.4)
plt.setp(ax1, xlabel='Time (Quarter)', ylabel='Y', xlim=(1, 44))
d_est = pd.DataFrame(np.percentile(ms['season'], probs, axis=0).T, columns=['p{}'.format(p) for p in probs])
d_est['x'] = d_est.index + 1
ax2.plot('x', 'p50', data=d_est, color='k')
ax2.fill_between('x', 'p10', 'p90', data=d_est, color='k', alpha=0.2)
ax2.fill_between('x', 'p25', 'p75', data=d_est, color='k', alpha=0.4)
plt.setp(ax2, xlabel='Time (Quarter)', ylabel='Y', xlim=(1, 44))
plt.show()