probs = (10, 25, 50, 75, 90)
columns = ['p{}'.format(p) for p in probs]
_, axes = plt.subplots(1, 2, figsize=figaspect(3/8), sharex=True, sharey=True)
for i, f in enumerate([fit, fit_b]):
ax = axes[i]
ms = f.extract()
d_est = pd.DataFrame(np.percentile(ms['Y_mean'], probs, axis=0).T, columns=columns)
d_est['x'] = d_est.index + 1
ax.plot('x', columns[2], data=d_est, color='k')
for j in range(2):
ax.fill_between('x', columns[j], columns[-j-1], data=d_est, color='k', alpha=0.2*(j+1))
ax.scatter(kubo11a.index+1, kubo11a['Y'], facecolor='w', edgecolor='k')
plt.setp(ax, xlabel='i', ylabel='Y[i]')
plt.show()