3
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

StanとRでベイズ統計モデリング(アヒル本)をPythonにしてみる - 11.4 Latent_Dirichlet_Allocation

Last updated at Posted at 2018-08-20

実行環境

インポート

import numpy as np
import pandas as pd
import pystan
import matplotlib.pyplot as plt
from matplotlib.figure import figaspect
from matplotlib import gridspec
import seaborn as sns
%matplotlib inline

データ読み込み

lda = pd.read_csv('./data/data-lda.txt')

11.4 Latent_Dirichlet_Allocation

11.4.1 解析の目的とデータの分布の確認

書籍のほうでは散布図を使っていますが、crosstabの後にmeltしてとか面倒くさかったので隙間のせいで偏った印象を与えないようにmatshowを使いました。

im = plt.matshow(pd.crosstab(lda['PersonID'], lda['ItemID']), cmap='binary', aspect='equal')
plt.colorbar(im, fraction=0.02, pad=0.03)
plt.setp(plt.gca(), xlabel='ItemID', ylabel='PersonID')
plt.show()

fig11-5.png

_, (ax1, ax2) = plt.subplots(1, 2, figsize=figaspect(3/8))
ax1.hist(lda.groupby('PersonID').count().unstack(), bins=30)
plt.setp(ax1, xticks=np.arange(10, 41, 10), xlim=(10, 40), xlabel='count by PersonID', ylabel='count')
ax2.hist(lda.groupby('ItemID').count().unstack(), bins=45)
plt.setp(ax2, xlabel='count by ItemID', ylabel='count')
plt.show()

fig11-6.png

11.4.4 Rでシミュレーション

N = 50
I = 120
K = 6

np.random.seed(123)
alpha0 = np.full(K, 0.8)
alpha1 = np.full(I, 0.2)
theta = np.random.dirichlet(alpha0, N)
phi = np.random.dirichlet(alpha1, K)

num_items_by_n = np.round(np.exp(np.random.normal(2.0, 0.5, N))).astype(int)

d = pd.DataFrame()
for n in range(N):
    z = np.random.choice(np.arange(K), num_items_by_n[n], replace=True, p=theta[n])
    item = [np.random.choice(np.arange(I), 1, replace=True, p=phi[k])[0] for k in z]
    d = d.append(pd.DataFrame(dict(PersonID=np.repeat(n, len(item)), ItemID=item)))

11.4.5 Stanで実装

K = 6
N = lda['PersonID'].max()
I = lda['ItemID'].max()
data = dict(
    E=lda.index.size,
    N=N,
    I=I,
    K=K,
    PersonID=lda['PersonID'],
    ItemID=lda['ItemID'],
    Alpha=np.repeat(0.5, I)
)
stanmodel = pystan.StanModel('./stan/model11-8.stan')
# fit_nuts = stanmodel.sampling(data=data, seed=123)
fit_vb = stanmodel.vb(data=data, seed=123)
ms = pd.read_csv(fit_vb['args']['sample_file'].decode('utf-8'), comment='#')

probs = (10, 25, 50, 75, 90)
idx = np.array([[k+1, i+1] for k, i in np.ndindex(K, I)])

d_qua = np.array([np.percentile(ms['phi.{}.{}'.format(k, i)], probs) for k, i in idx])
d_qua = pd.DataFrame(np.hstack((idx, d_qua)), columns=['tag', 'item']+['p{}'.format(p) for p in probs])

fig = plt.figure(figsize=figaspect(2/5))
gs1 = gridspec.GridSpec(2, 3)
for i, pos in enumerate(np.ndindex(2, 3)):
    ax = fig.add_subplot(gs1[pos], sharex=ax if i > 0 else None)
    ax.hlines('item', 0, 'p50', data=d_qua.query('tag==@i+1'))
    if pos[0] == 0:
        plt.setp(ax.get_xticklabels(), visible=False)
    else:
        plt.setp(ax, xlabel='phi[k,y]')
    if pos[1] == 0:
        plt.setp(ax, yticks=[1] + list(np.arange(20, 121, 20)), ylabel='ItemID')
    else:
        plt.setp(ax.get_yticklabels(), visible=False)
    plt.setp(ax, title=i+1)
gs1.tight_layout(fig, rect=[None, None, 0.6, None])

idx = np.array([[n+1, k+1] for n, k in np.ndindex(N, K)])

d_qua = np.array([np.percentile(ms['theta.{}.{}'.format(n, k)], probs) for n, k in idx])
d_qua = pd.DataFrame(np.hstack((idx, d_qua)), columns=['person', 'tag']+['p{}'.format(p) for p in probs])

gs2 = gridspec.GridSpec(2, 1)
for i, person in enumerate([1, 50]):
    ax = fig.add_subplot(gs2[i], sharex=ax if i > 0 else None)
    sub = d_qua.query('person==@person')
    ax.barh('tag', 'p50', data=sub, xerr=(sub['p25'], sub['p75']), color='w', edgecolor='k')
    if i == 0:
        plt.setp(ax.get_xticklabels(), visible=False)
    else:
        plt.setp(ax, xlabel='theta[n,k]')
    plt.setp(ax, title=person, ylabel='tag')
gs2.tight_layout(fig, rect=[0.6, None, None, None])

plt.show()

fig11-11.png

3
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
3
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?