0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

StanとRでベイズ統計モデリング(アヒル本)をPythonにしてみる - 10.2 弱情報事前分布

Last updated at Posted at 2018-08-19

実行環境

インポート

import numpy as np
from scipy import stats
import pandas as pd
import pystan
import matplotlib.pyplot as plt
from matplotlib.figure import figaspect
import seaborn as sns
%matplotlib inline

データ読み込み

salary2 = pd.read_csv('./data/data-salary-2.txt')
shogi_player = pd.read_csv('./data/data-shogi-player.txt')

10.2 弱情報事前分布

10.2.2 正の値を持つパラメータ

x = np.logspace(-10, 1, 600)
p1 = stats.invgamma.pdf(x, a=0.001, scale=0.001)
p2 = stats.invgamma.pdf(x, a=0.1, scale=0.1)

_, axes = plt.subplots(1, 2, figsize=figaspect(3/8))
for i, ax in enumerate(axes):
    ax.plot(x, p1, c='k', linestyle='dashed')
    ax.plot(x, p2, c='k')
    plt.setp(ax, xlabel='y', ylabel='probability density', xlim=(0, 0.01) if i == 1 else None)
plt.tight_layout()
plt.show()

fig10-2.png

x = np.linspace(0, 5, 101)
p1 = 2*stats.t.pdf(x, df=4)
p2 = 2*stats.norm.pdf(x)

plt.figure(figsize=figaspect(3/4))
ax = plt.axes()
ax.plot(x, p1, c='k')
ax.plot(x, p2, c='k', linestyle='dashed')
plt.setp(ax, xlabel='y', ylabel='probability density')
plt.show()

fig10-3.png

data = {col: salary2[col] for col in salary2.columns}
data['N'] = salary2.index.size
data['K'] = salary2['KID'].max()

fit1 = pystan.stan('./stan/model8-4b.stan', data=data, seed=1234)
fit2 = pystan.stan('./stan/model8-4d.stan', data=data, seed=1234)
ms1 = fit1.extract()
ms2 = fit2.extract()

_, axes = plt.subplots(1, 2, figsize=figaspect(3/8), sharex=True, sharey=True)
for ms, ax in zip([ms1, ms2], axes):
    bins = (ms['s_a'].max() - ms['s_a'].min()).astype(int) // 20
    sns.distplot(ms['s_a'], bins=bins, hist_kws=dict(facecolor='w', edgecolor='k'), kde_kws=dict(color='k', shade=True), ax=ax)
    plt.setp(ax, xlim=(0, 600))
plt.show()

fig10-4.png

N = shogi_player.values.max()
data = dict(
    N=N,
    G=shogi_player.index.size,
    LW=shogi_player
)
fit = pystan.stan('./stan/model10-4.stan', data=data, pars=('mu', 's_mu', 's_pf'), seed=1234)
ms = fit.extract()

d_qua = pd.DataFrame(np.percentile(ms['mu'], (5, 50, 95), axis=0).T, columns=('p05', 'p50', 'p95'))
d_qua['nid'] = np.arange(N) + 1

d_top5 = d_qua.sort_values('p50', ascending=False).head()
d_top5
d_qua = pd.DataFrame(np.percentile(ms['s_pf'], (5, 50, 95), axis=0).T, columns=('p05', 'p50', 'p95'))
d_qua['nid'] = np.arange(N) + 1

d_top3 = d_qua.sort_values('p50', ascending=False).head(3)
d_top3
d_bot3 = d_qua.sort_values('p50').head(3)
d_bot3

10.2.4 分散共分散行列

data = {col: salary2[col] for col in salary2.columns}
data['N'] = salary2.index.size
data['K'] = salary2['KID'].max()
fit = pystan.stan('./stan/model10-5.stan', data=data, seed=1234)
data = {col: salary2[col] for col in salary2.columns}
data['N'] = salary2.index.size
data['K'] = salary2['KID'].max()
fit = pystan.stan('./stan/model10-6.stan', data=data, seed=1234)
data = {col: salary2[col] for col in salary2.columns}
data['N'] = salary2.index.size
data['K'] = salary2['KID'].max()
data['Nu'] = 2
fit = pystan.stan('./stan/model10-7.stan', data=data, seed=1234)
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?