1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

StanとRでベイズ統計モデリング(アヒル本)をPythonにしてみる - Chapter 5 練習問題

Last updated at Posted at 2018-08-18

実行環境

インポート

import numpy as np
import pandas as pd
import pystan
import matplotlib.pyplot as plt
from matplotlib.figure import figaspect
from matplotlib import colors
from matplotlib.markers import MarkerStyle
%matplotlib inline

データの準備

attendance1 = pd.read_csv('./data/data-attendance-1.txt')
attendance2 = pd.read_csv('./data/data-attendance-2.txt')
attendance3 = pd.read_csv('./data/data-attendance-3.txt')
data3a = pd.read_csv('./data/data3a.csv')
data4a = pd.read_csv('./data/data4a.csv')

(1)

data = dict(
    N=len(attendance1.index),
    A=attendance1['A'],
    Score=attendance1['Score']/200,
    Y=attendance1['Y']
)
fit = pystan.stan('./stan/model5-3.stan', data=data, seed=1234)
ms = fit.extract()
noise = attendance1['Y'].values - ms['mu']

(3)

pd.crosstab(attendance3['A'], attendance3['Y'])

(4)

data = {col: attendance3[col] for col in attendance3.columns if col in ['A', 'Score', 'Y']}
data['Score'] /= 200
data['I'] = attendance3.index.size
data['WID'] = pd.Categorical(attendance3['Weather'], categories=['', 'A', 'B', 'C'], ordered=True).codes
fit = pystan.stan('./stan/chap05ex4.stan', data=data, pars=['b', 'bw2', 'bw3'], seed=1234)

(5)

data = {col: attendance2[col] for col in attendance2.columns if col in ['A', 'Score', 'M']}
data['Score'] /= 200
data['N'] = attendance2.index.size
fit = pystan.stan('./stan/model5-6b.stan', data=data, seed=1234)
ms = fit.extract()

d_qua = pd.DataFrame(np.percentile(ms['m_pred'], (10, 50, 90), axis=0).T, columns=('p10', 'p50', 'p90'))
d_qua = pd.concat([attendance2, d_qua], axis=1)

plt.figure(figsize=figaspect(1))
ax = plt.axes()
c = ['black', 'gray']
for v in d_qua['A'].unique():
    d_part = d_qua.query('A == @v')
    ax.errorbar('M', 'p50', data=d_part, yerr=[d_part['p50']-d_part['p10'], d_part['p90']-d_part['p50']], fmt='.', color=colors.to_rgb(c[v]), marker=MarkerStyle.filled_markers[int(v)], label='A={}'.format(v))
# ax.axline(1, 1)
lim = (10, 80)
ax.plot(lim, lim, c='k', alpha=3/5)
plt.setp(ax, xlim=lim, ylim=lim, xlabel='Obserbed', ylabel='Predicted')
plt.show()

chap05ex5.png

(6)

data = {col.upper(): data3a[col] for col in data3a.columns if col in ['x', 'y']}
data['N'] = data3a.index.size
data['F'] = pd.Categorical(data3a['f']).codes
fit = pystan.stan('./stan/chap05ex6.stan', data=data, seed=1234)

(7)

data = {col.upper(): data4a[col] for col in data4a.columns if col in ['N', 'y', 'x']}
data['I'] = data4a.index.size
data['F'] = pd.Categorical(data4a['f']).codes
fit = pystan.stan('./stan/chap05ex7.stan', data=data, seed=1234)
ms = fit.extract()
probs = (10, 50, 90)
d_qua = pd.DataFrame(np.percentile(ms['y_pred'], probs, axis=0).T, columns=['p{}'.format(p) for p in probs])

plt.figure(figsize=figaspect(1))
ax = plt.axes()
np.random.seed(1234)
x = data4a['y'] + np.random.uniform(-0.2, 0.2, data4a.index.size)
ax.errorbar(x, d_qua['p50'], yerr=[d_qua['p50']-d_qua['p10'], d_qua['p90']-d_qua['p50']], fmt='o', color='k', markersize=3, elinewidth=1)
xmin, xmax = ax.get_xlim()
ymin, ymax = ax.get_ylim()
lim = (min(xmin, ymin), max(xmax, ymax))
plt.plot(lim, lim, c='k', alpha=0.6)
plt.setp(ax, xlabel='Obserbed', ylabel='Predicted', xlim=lim, ylim=lim)
plt.show()

chap05ex7.png

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?