2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

画像処理(コンピュータビジョン)の主要なタスクと用いるアーキテクチャについて

Posted at

この投稿の目的

画像処理に関連する問題を解く際に実装方法を選択するためのガイドを作る。
※初学者のため、記載内容に過不足・誤りなどがあれば、指摘頂けると幸い。

問題解決の流れ

項目 内容
タスクの定義 これから解く問題をどのタスクとして扱うか定義する
アーキテクチャの決定 定義したタスクの中から主要なアーキテクチャを決定
評価指標の決定 問題に対して適切な評価指標を決める

画像処理の主要なタスク

解きたい問題が画像認識である時に、要件に応じてそれがどのタスクであるかを定義する

  • 画像分類
  • 物体検出
  • セマンティックセグメンテーション
  • 異常検知

タスク毎の有名なアーキテクチャ

※アーキテクチャ毎の特徴、使い分けを今後追記する

画像分類

  • AlexNet
  • VGG16
  • ResNet

物体検出

  • Yolo-v2, yolo-v3
  • SSD

セマンティックセグメンテーション

  • U-Net
  • SegNet
  • PSPNet
  • GCN
  • DeepLabv3+

異常検知

  • auto-encoderを元にしたモデル (特定のタスクがないので標準的なモデルも定まっていない)

参照: https://www.youtube.com/watch?v=vFpZrxaq5xU

タスク毎の評価指標

※セマンティックセグメンテーション以外は今後メンテナンス

セマンティックセグメンテーション

  • Pixel Wise Accuracy
  • Mean Accuracy
  • Mean Intersection over Union(Mean IoU)
  • Precision, Recall, F1 score
2
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?