0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

MIT 单变量微积分メモ

Posted at

導関数

f'(x) = \frac{dy}{dx} = \lim_{△X \to 0} \frac{f(x+△X)-f(x)}{△X} \\

微分可能の定義

x=aにおける \lim_{△X \to 0} \frac{f(a+△X)-f(a)}{△X} が存在すれば微分可能 \\ 

連続性の定義

 \lim_{x \to a} f(x) = f(a) \\

微分可能と連続性の関係

  X=aで微分可能ならx=aで連続、逆に連続でも微分可能とは限らない。

  微分可能 → 左極限値 = 右極限値 → 連続

  連続 → 左極限値 =  右極限値 とは限らない → 微分可能とは限らない

和の微分公式

  (a * f(x) + b * g(x))' = a* f'(x) + b * g'(x) 

積の微分公式

  (f(x)* g(x))' = f'(x) * g(x) +  f(x) * g'(x)  

商の積分公式


(\frac{f(x)}{h(x)})' = \frac{f'(x) * h(x) - f(x) * h'(x)}{h(x)^2}

合成関数の微分

{f(g(x))}' = f'(g(x)) * g'(x)

理解しすいため

\frac{dy}{dh} = \frac{dy}{dx} * \frac{dx}{dh}

高階微分


f''(x) =  \lim_{△X \to 0} \frac{f'(x+△X)-f'(x)}{△X} \\ =  2\lim_{△X \to 0} \frac{ \frac{f(x+2△X)+f(x)}{2}-f(x+△X)}  {(△X)^2} \\

図の参照
http://www.phys.u-ryukyu.ac.jp/~maeno/sizensuugaku2016/lec9.html

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?