6
12

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

python OpenCVで赤、青、緑検出

Last updated at Posted at 2019-09-01

目的

python OpenCVで赤、青、緑検出した際の備忘録です。

コード

  1. 画像読み込み
  2. RGB→HSV表色系へ変換し、inRangeで各色のマスク画像取得
  3. ノイズ対策のために膨張と収縮
  4. cvContourで領域検出
  5. 面積が最大の領域を残す
  6. 2.〜5.をRGBそれぞれで実施する
sample.py
#!/usr/bin/env python3
# -*- coding: utf-8 -*-

import cv2
import numpy as np
import glob

# color definition
RED   = 1
GREEN = 2
BLUE  = 3

def find_rect_of_target_color(image, color_type):
  hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV_FULL)
  h = hsv[:, :, 0]
  s = hsv[:, :, 1]

  # red detection
  if color_type == RED:
    mask = np.zeros(h.shape, dtype=np.uint8)
    mask[((h < 20) | (h > 200)) & (s > 128)] = 255

  # blue detection
  if color_type == BLUE:
    lower_blue = np.array([130, 50, 50])
    upper_blue = np.array([200, 255, 255])
    mask = cv2.inRange(hsv, lower_blue, upper_blue)

  # green detection
  if color_type == GREEN:
    lower_green = np.array([75, 50, 50])
    upper_green = np.array([110, 255, 255])
    mask = cv2.inRange(hsv, lower_green, upper_green)

  # 近傍の定義
  neiborhood = np.array([[0, 1, 0],
                         [1, 1, 1],
                         [0, 1, 0]],
                        np.uint8)
  # 収縮
  mask = cv2.dilate(mask,
                    neiborhood,
                    iterations=2)

  # 膨張
  mask = cv2.erode(mask,
                   neiborhood,
                   iterations=2)

  contours, _ = cv2.findContours(mask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
  rects = []
  for contour in contours:
    approx = cv2.convexHull(contour)
    rect = cv2.boundingRect(approx)
    rects.append(np.array(rect))
  return rects


if __name__ == "__main__":

  count = 0
  files = glob.glob('./image.png')
  for f in files:

    count += 1
    count_padded = '%05d' % count

    while cv2.waitKey(30) < 0:

      frame = cv2.imread(f)

      # red
      rects = find_rect_of_target_color(frame, RED)
      if len(rects) > 0:
        rect = max(rects, key=(lambda x: x[2] * x[3]))
        if rect[3] > 10: # if red circle is one
          cv2.rectangle(frame, tuple(rect[0:2]), tuple(rect[0:2] + rect[2:4]), (0, 0, 255), thickness=2)
      #for rect in rects:
      #  cv2.rectangle(frame, tuple(rect[0:2]), tuple(rect[0:2] + rect[2:4]), (0, 0, 255), thickness=2)

      # green
      rects = find_rect_of_target_color(frame, GREEN)
      if len(rects) > 0:
        rect = max(rects, key=(lambda x: x[2] * x[3]))
        if rect[3] > 10:
         cv2.rectangle(frame, tuple(rect[0:2]), tuple(rect[0:2] + rect[2:4]), (0, 255, 0), thickness=2)
      #for rect in rects:      
      #  cv2.rectangle(frame, tuple(rect[0:2]), tuple(rect[0:2] + rect[2:4]), (0, 255, 0), thickness=2)

      # blue
      rects = find_rect_of_target_color(frame, BLUE)
      if len(rects) > 0:
        rect = max(rects, key=(lambda x: x[2] * x[3]))
        if rect[3] > 10:
          cv2.rectangle(frame, tuple(rect[0:2]), tuple(rect[0:2] + rect[2:4]), (255, 0, 0), thickness=2)
      #for rect in rects:
      #  cv2.rectangle(frame, tuple(rect[0:2]), tuple(rect[0:2] + rect[2:4]), (255, 0, 0), thickness=2)

      cv2.imshow('frame', frame)
      write_file_name = count_padded + ".png"
      cv2.imwrite(write_file_name, frame)

cv2.destroyAllWindows()

テスト

image.png

00010.png

赤、青、緑検出できました!

参考

Pythonで連番画像の読み込み(str/format/glob)
pythonで赤い物体を認識しよう
opencv.erode() / dilate() による画像の膨張処理 / 収縮処理

6
12
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
6
12

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?