言語処理100本ノック 2015の挑戦記録です。環境はUbuntu 16.04 LTS + Python 3.5.2 :: Anaconda 4.1.1 (64-bit)です。過去のノックの一覧はこちらからどうぞ。
第7章: データベース
artist.json.gzは,オープンな音楽データベースMusicBrainzの中で,アーティストに関するものをJSON形式に変換し,gzip形式で圧縮したファイルである.このファイルには,1アーティストに関する情報が1行にJSON形式で格納されている.JSON形式の概要は以下の通りである.
フィールド 型 内容 例 id ユニーク識別子 整数 20660 gid グローバル識別子 文字列 "ecf9f3a3-35e9-4c58-acaa-e707fba45060" name アーティスト名 文字列 "Oasis" sort_name アーティスト名(辞書順整列用) 文字列 "Oasis" area 活動場所 文字列 "United Kingdom" aliases 別名 辞書オブジェクトのリスト aliases[].name 別名 文字列 "オアシス" aliases[].sort_name 別名(整列用) 文字列 "オアシス" begin 活動開始日 辞書 begin.year 活動開始年 整数 1991 begin.month 活動開始月 整数 begin.date 活動開始日 整数 end 活動終了日 辞書 end.year 活動終了年 整数 2009 end.month 活動終了月 整数 8 end.date 活動終了日 整数 28 tags タグ 辞書オブジェクトのリスト tags[].count タグ付けされた回数 整数 1 tags[].value タグ内容 文字列 "rock" rating レーティング 辞書オブジェクト rating.count レーティングの投票数 整数 13 rating.value レーティングの値(平均値) 整数 86 artist.json.gzのデータをKey-Value-Store (KVS) およびドキュメント志向型データベースに格納・検索することを考える.KVSとしては,LevelDB,Redis,KyotoCabinet等を用いよ.ドキュメント志向型データベースとして,MongoDBを採用したが,CouchDBやRethinkDB等を用いてもよい.
###62. KVS内の反復処理
60で構築したデータベースを用い,活動場所が「Japan」となっているアーティスト数を求めよ.
####出来上がったコード:
# coding: utf-8
import leveldb
fname_db = 'test_db'
# LevelDBオープン
db = leveldb.LevelDB(fname_db)
# valueが'Japan'のものを列挙
clue = 'Japan'.encode()
result = [value[0].decode() for value in db.RangeIter() if value[1] == clue]
# 件数表示
print('{}件'.format(len(result)))
####実行結果:
22821件
###LevelDBの列挙
登録内容の列挙はLevelDB.RangeIter()
でイテレータを取得して行いました。
63本目のノックは以上です。誤りなどありましたら、ご指摘いただけますと幸いです。
実行結果には、100本ノックで用いるコーパス・データで配布されているデータの一部が含まれます。この第7章で用いているデータのライセンスはクリエイティブ・コモンズ 表示 - 非営利 - 継承 3.0 非移植(日本語訳)です。