0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

2025第一回東大本レ第三問を解いてみた

Posted at
2025年第一回東大本レ第三問
数列$\lbrace a_n\rbrace$を$$a_n^2=\sum_{k=1}^n a_k,~a_n>0,~n\in\mathbb{N}$$で定める.
(1)$a_1,~a_2$を求めよ.
(2)${}^\forall n\in\mathbb{N},~a_n\le \frac{n+\sqrt{n}}{2}$を示せ.
(3)$\lim_{n\to+\infty}\frac{a_n}{n}$を求めよ.

(1)
$a_1=1,~a_2=\frac{1+\sqrt{5}}{2}\cdots(\underline{\text{答}})$

(2)$\underline{Proof}$
$n\in\mathbb{N}$とする.このとき,

\begin{aligned}
    &a_{n+1}^2-a_n^2=\sum_{k=1}^{n+1}a_k-\sum_{k=1}^na_k\\
    \iff&a_{n+1}^2-a_n^2=a_{n+1}\\
    \iff&a_{n+1}=\frac{1+\sqrt{1+4a_n^2}}{2}\quad(\because a_{n+1}>0)
\end{aligned}

である.
$n$に関する数学的帰納法によって,与えられた不等式を証明する.

  • $n=1$のときは自明.
  • $n$のとき,$a_n\le\frac{n+\sqrt{n}}{2}$を仮定すると,
\begin{aligned}
    &n\le n+1\\
    \iff&2n\sqrt{n}\le 2n\sqrt{n+1}\\
    \iff&1+n^2+2n\sqrt{n}+n\le n^2+2n\sqrt{n+1}+n+1\\
    \iff&1+(n+\sqrt{n})^2\le (n+\sqrt{n+1})^2\\
    \implies&\sqrt{1+(n+\sqrt{n})^2}\le n+\sqrt{n+1}\\
    \implies&\sqrt{1+4a_n^2}\le n+\sqrt{n+1}\quad(\because\text{帰納法の仮定})\\
    \iff&\frac{1+\sqrt{1+4a_n^2}}{2}\le\frac{n+1+\sqrt{n+1}}{2}\\
    \iff&a_{n+1}\le\frac{n+1+\sqrt{n+1}}{2}
\end{aligned}

が成立し,$n+1$のときも成立する.$\therefore$ok.$\square$

(3)
まず,次の主張を証明する.

claim
${}^\forall n\in\mathbb{N},~\frac{n-\sqrt{n}}{2}\le a_n$

$\underline{Proof}$
$n$に関する数学的帰納法によって証明する.

  • $n=1$のときは自明.
  • $n\ge 2$のとき,$\frac{n-\sqrt{n}}{2}\le a_n$を仮定すると,
\begin{aligned}
    &n\le n+1\\
    \iff&-2n\sqrt{n+1}\le-2n\sqrt{n}\\
    \iff&n^2-2n\sqrt{n+1}+n+1\le 1+n^2-2n\sqrt{n}+n\\
    \iff&(n-\sqrt{n+1})^2\le 1+(n-\sqrt{n})^2\\
    \implies&n-\sqrt{n+1}\le \sqrt{1+(n-\sqrt{n})^2}\quad(\because n\ge 2)\\
    \implies&n-\sqrt{n+1}\le\sqrt{1+4a_n^2}\quad(\because\text{帰納法の仮定})\\
    \iff&\frac{n+1-\sqrt{n+1}}{2}\le\frac{1+\sqrt{1+4a_n^2}}{2}\\
    \iff&\frac{n+1-\sqrt{n+1}}{2}\le a_{n+1}
\end{aligned}

が成立し,$n+1$のときも成立する.$\therefore$ok.$\square$

以上より,

{}^\forall n\in\mathbb{N},~\frac{n-\sqrt{n}}{2}\le a_n\le \frac{n+\sqrt{n}}{2}

であり,

\frac{n-\sqrt{n}}{2n}\to \frac{1}{2},~\frac{n+\sqrt{n}}{2n}\to \frac{1}{2}\quad(n\to+\infty)

より,はさみうちの原理より,$\lim_{n\to+\infty} \frac{a_n}{n}=\frac{1}{2}\cdots(\underline{\text{答}})$

はさみうちの原理の証明

$n\to+\infty$でのはさみうちの原理も証明しておきましょう.

はさみうちの原理
$a_n\le b_n\le c_n$で,$a_n, c_n\to \beta~(n\to+\infty)$であれば,$b_n\to \beta~(n\to+\infty)$

$\underline{Proof}$
仮定から,

\begin{aligned}
    &{}^\forall \epsilon_1>0, {}^\exists N_1=N_1(\epsilon)>0~\text{s.t.}~n_1>N_1\implies \beta-\epsilon_1<a_n<\beta+\epsilon_1\\
    &{}^\forall \epsilon_2>0, {}^\exists N_2=N_2(\epsilon)>0~\text{s.t.}~n_2>N_2\implies \beta-\epsilon_2<c_n<\beta+\epsilon_2
\end{aligned}

が成立している.
任意の$\epsilon>0$に対して,$N>0$を$N=\max\lbrace N_1(\epsilon), N_2(\epsilon)\rbrace$ととる.このとき,$n>N$なる全ての$n\in\mathbb{N}$に対して,

\begin{aligned}
    b_n-\beta&\le c_n-\beta<\beta+\epsilon-\beta=\epsilon\\
    b_n-\beta&\ge a_n-\beta>\beta-\epsilon-\beta=-\epsilon
\end{aligned}

即ち

-\epsilon<b_n-\beta<\epsilon

が成立する.$\therefore$ok.$\square$

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?