2024 東大院 数理科学研究科 数理科学専攻 修士課程 専門科目A 第4問 |
---|
$t\in\mathbb{R}$に対して$[t]$を$t$以下最大の整数とし,$0<\alpha\le 1$とする$\displaystyle I_\alpha:=\int_0^1\left(\frac{\alpha}{x}-\left[\frac{\alpha}{x}\right]\right)dx,~ J_\alpha:=\int_0^1\left(\alpha\left[\frac{1}{x}\right]-\left[\frac{\alpha}{x}\right]\right)dx$とする.以下の問いに答えよ. |
(1) $\alpha=1$のとき,$I_\alpha$は$\displaystyle \sum_{n=1}^{+\infty}\left\lbrace-\frac{1}{n+1}-\log\left(1-\frac{1}{n+1}\right)\right\rbrace$に収束することを示せ. |
(2) $I_\alpha=\alpha I_1-\alpha\log \alpha$を示せ. |
(3) $J_\alpha$を求めよ. |
全体として,少々面倒ではありますが難しいことはなく,高校数学でも行けそうな感じがしました.ただ,床函数や天井函数なんかがでてくる積分に慣れてないとちょっと難しいかも知れません.そんな印象です.
もし間違いや論理の飛躍,もっと楽ちんにできる方法などがあれば指摘してくださるとありがたいです.
(1)Proof.
$\alpha=1$のとき
\begin{aligned}
I_1&=\int_0^1\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)dx\\
&=\sum_{n=1}^{+\infty}\int_{\frac{1}{n+1}}^{\frac{1}{n}}\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)dx\\
&=\sum_{n=1}^{+\infty}\int_{\frac{1}{n+1}}^{\frac{1}{n}}\left(\frac{1}{x}-n\right)dx\quad \left(\because \frac{1}{n+1}< x<\frac{1}{n}\iff n<\frac{1}{x}<n+1\right)\\
&=\sum_{n=1}^{+\infty}(\log x-nx)\Big|_{\frac{1}{n+1}}^{\frac{1}{n}}\\
&=\sum_{n=1}^{+\infty}\left\lbrace-\frac{1}{n+1}-\log\left(1-\frac{1}{n+1}\right)\right\rbrace
\end{aligned}
が成立する.収束性については,$\log$函数のMaclaurin展開から
\begin{aligned}
\left|\sum_{n=1}^{+\infty}\left\lbrace-\frac{1}{n+1}-\log\left(1-\frac{1}{n+1}\right)\right\rbrace\right|&=\left|\sum_{n=1}^{+\infty}\left\lbrace-\frac{1}{n+1}+\sum_{k=1}^{+\infty}\frac{1}{k}\left(\frac{1}{n+1}\right)^k\right\rbrace\right|\\
&=\left|\sum_{n=1}^{+\infty}\sum_{k=2}^{+\infty}\frac{1}{k}\left(\frac{1}{n}\right)^k\right|\\
&\le \sum_{n=1}^{+\infty}\sum_{k=2}^{+\infty}\left(\frac{1}{n}\right)^k\\
&=\sum_{n=1}^{+\infty}\frac{1}{k(k+1)}=1
\end{aligned}
より成立する.$\square$
(2)Proof.
\begin{aligned}
I_\alpha&=\alpha\int_0^{\frac{1}{\alpha}}\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)dx\\
&=\alpha\left\lbrace\int_0^1\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)dx-\int_{\frac{1}{\alpha}}^1\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)dx\right\rbrace\\
&=\alpha\left\lbrace I_1-\int_{\frac{1}{\alpha}}^1\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)dx\right\rbrace\\
&=\alpha\left\lbrace I_1-\int_{\frac{1}{\alpha}}^1\left(\frac{1}{x}-0\right)dx\right\rbrace\quad\left(\because~\alpha<\frac{1}{x}<1\right)\\
&=\alpha\bigg\{ I_1-(\log x)\Big|_{\frac{1}{\alpha}}^1\bigg\}\\
&=\alpha\left(I_1-\log\alpha\right)\quad\square
\end{aligned}
(3)
\begin{aligned}
J_\alpha&=\int_0^1\left(\alpha\left[\frac{1}{x}\right]-\left[\frac{\alpha}{x}\right]\right)dx\\
&=\int_0^1\left(\frac{\alpha}{x}-\frac{\alpha}{x}+\alpha\left[\frac{1}{x}\right]-\left[\frac{\alpha}{x}\right]\right)dx\\
&=\int_0^1\left(\frac{\alpha}{x}-\left[\frac{\alpha}{x}\right]\right)dx-\alpha\int_0^1\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)dx\\
&=I_\alpha-\alpha I_1\\
&=\alpha(I_1-\alpha\log\alpha)-\alpha I_1\\
&=-\alpha\log\alpha\cdots(\text{答})
\end{aligned}