0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

Deep Learning Specialization (Coursera) 自習記録 (C1W4)

Last updated at Posted at 2020-05-15

はじめに

Deep Learning Specialization の Course 1, Week 4 (C1W4) の内容です。

(C1W4L01) Deep L-layer Neural Network

内容

  • Deep neural network の記号の説明
  • $n^{[l]}$ ; #units in layer $l$
  • $a^{[l]}$ ; activations in layer $l$ ($x = a^{[0]}$, $\hat{y} = a^{[L]}$)
  • $W^{[l]}$, $b^{[l]}$ ; weights for $z^{[l]}$

(C1W4L02) Forward Propagation in a Deep Network

内容

z^{[l]} = W^{[l]} a^{[l-1]} + b^{[l]} \\
a^{[l]} = g^{[l]}\left(z^{[l]}\right)
  • ベクトル化する (Vectorized)
Z^{[l]} = W^{[l]} A^{[l-1]} + b^{[l]} \\
A^{[l]} = g^{[l]}\left(Z^{[l]}\right)

(C1W4L03) Getting your matrix dimensions right

内容

  • バグを除去するためには,行列の次元があっているか調べる
  • $W^{[l]}$ ; $(n^{[l]}, n^{[l-1]})$
  • $b^{[l]}$ ; $(n^{[l]}, 1)$
  • $dW^{[l]}$ ; $(n^{[l]}, n^{[l-1]})$
  • $db^{[l]}$ ; $(n^{[l]}, 1)$
  • $Z^{[l]}$ , $A^{[l]}$ ; $(n^{[l]}, m)$

(C1W4L04) Why deep representation?

内容

  • 浅い neural network より深い neural network のほうが,少ないユニットで複雑な表現ができる

(C1W4L05) Building Blocks of a Deep Neural Network

内容

  • Forward propagation と Back propagation をブロック図を使って説明

(C1W4L06) Forward and backward propagation

内容

  • ブロック図を発展させて Forward propagation と Backward propagation の全体像を説明
  • Forward propagation
    • Input ; $A^{[l-1]}$
    • Output ; $A^{[l]}$ (cache $Z^{[l]}$)
Z^{[l]} = W^{[l]} A^{[l-1]} + b^{[l]} \\
A^{[l]} = g^{[l]}\left(Z^{[l]}\right)
  • Backward propagation
    • Input ; $da^{[l]}$
    • Output ; $da^{[l-1]}$, $dW^{[l]}$, $db^{[l]}$
dZ^{[l]} = dA^{[l]} \ast g^{[l]\prime}\left(Z^{[l]}\right) \\
dW^{[l]} = \frac{1}{m}dZ^{[l]}A^{[l-1]T} \\
db^{[l]} = \frac{1}{m}\textrm{np.sum}\left(dZ^{[l]}\textrm{, axis=1, keepdims=True}\right) \\
dA^{[l-1]} = W^{[l]T}dZ^{[l]}

(C1W4L07) Parameters vs Hyperparameters

内容

  • Parameters ; $W^{[1]}$,$b^{[1]}$,…
  • Hyperparameters ; learning rate $\alpha$,#iterations, #hidden layer $L$, #hidden units $n^{[i]}$, activation function の選択
  • hyperparameters は parameters を制御するパラメタ

(C1W4L08) What does this have to do with the brain

内容

  • ディープラーニングと脳の関係性について
  • ニューロンはロジスティック回帰に似ているが,あまりこの比喩は使わない

参考

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?