1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

【随時更新】損失関数を表にしてまとめてみた

Posted at

損失関数を毎回探すのが面倒なので、名称と数式のみまとめた表を作成しました。

随時更新します。
(6/24 Wing Lossとa-Softmax Lossがきちんと表示されないので省略してます…)

ここで、$n$はデータポイントの数
$y_i$は真のラベル
$p_i$は予測確率
$x_i$と$x_i'$は入力データ
$y$はバイナリラベル
$\text{logits}$はモデルの出力(ロジット)$\sigma$はシグモイド関数
$N$はバッチサイズ
$d_i$と$d_{i'}$はデータポイントの距離、$\mu_i$はガウス分布の平均
$\sigma_i$はガウス分布の標準偏差
$C$はクラス数
$\text{smooth}_{L1}$はSmooth L1関数、$\text{huber}$はHuber関数を表します。

損失関数 数式
Cross Entropy $-\sum_{i=1}^{n} y_i \log(p_i)$
Kullback-Leibler divergence Loss $\sum_{i=1}^{n} y_i \log\left(\frac{y_i}{p_i}\right)$
Binary Cross Entropy $-(y \log(p) + (1-y)\log(1-p))$
Binary Cross Entropy with logits $-\sum_{i=1}^{n} y_i \log\left(\sigma(\text{logits}_i)\right) + (1-y_i)\log\left(1-\sigma(\text{logits}_i)\right)$
Negative log likelihood Loss $-\sum_{i=1}^{n} y_i \log(p_i)$
Poisson Negative log likelihood Loss $\sum_{i=1}^{n} p_i - y_i \log(p_i)$
Gaussian Negative log likelihood Loss $\frac{1}{2} \sum_{i=1}^{n} \left(\frac{y_i - \mu_i}{\sigma_i}\right)^2 + \log(\sigma_i) + \frac{1}{2}\log(2\pi)$
Cosine Embedding Loss $\frac{1}{2N} \sum_{i=1}^{N} \left(1 - y_i \cdot \frac{x_i}{|x_i|}\right) + \left(1 - y_i \cdot \frac{x_i'}{|x_i'|}\right)$
Hinge Embedding Loss $\frac{1}{n} \sum_{i=1}^{n} \max(0, \text{margin} - y_i \cdot x_i)$
L1-Loss $\sum_{i=1}^{n}\left\lvert y_i - p_i \right\rvert$
Smooth L1-Loss $ \sum_{i=1}^{n} \text{smooth}_{L1}(y_i - p_i)$
Huber Loss $ \sum_{i=1}^{n} \text{huber}(y_i - p_i)$
Mean Squared Error $\frac{1}{n} \sum_{i=1}^{n} (y_i - p_i)^2$
Soft Margin Loss $\frac{1}{n} \sum_{i=1}^{n} \max(0, \text{margin} - y_i \cdot p_i)$
Multi Margin Loss $\frac{1}{n} \sum_{i=1}^{n} \sum_{j \neq y_i}^{C} \max(0, \text{margin} - p_{y_i} + p_j)$
Multilabel Margin Loss $\frac{1}{n} \sum_{i=1}^{n} \sum_{j \neq y_i}^{C} \max(0, \text{margin} - p_{ij})$
Multilabel Soft Margin Loss $\frac{1}{n} \sum_{i=1}^{n} \sum_{j \neq y_i}^{C} \log(1 + \exp(margin - p_{ij}))$
Margin Ranking Loss $\frac{1}{n} \sum_{i=1}^{n} \max(0, m - y_i \cdot (x_i - x_i') + y_i \cdot (x_i - x_i'))$
Triplet Margin Loss $\frac{1}{n} \sum_{i=1}^{n} \max(0, \text{margin} + d_{i} - d_{i'}),$
Triplet Margin with Distance Loss $\frac{1}{n} \sum_{i=1}^{n} \max(0, \text{margin} + d_{i} - d_{i'}),$
Focal Loss $-\sum_{i=1}^{n} (1-p_i)^\gamma \log(p_i)$
Online Triplet Loss $\max(0, \text{margin} + d_{i} - d_{i'})$
AUC Loss $\frac{1}{2}\left(1 - \text{AUC}\right)$
Contrastive Loss $\frac{1}{n} \sum_{i=1}^{n} (1 - y_i) \cdot \frac{1}{2}d_{i}^2 + y_i \cdot \frac{1}{2}\max(0, \text{margin} - d_{i})^2$
Angular Loss $\frac{1}{n}\sum_{i=1}^{n}\max(m + \cos(\theta_{y_i} - \theta_{y_{\text{margin}}}), 0)$
Dice Loss $1 - \frac{2\sum_{i=1}^{n}(p_i \cdot y_i) + \epsilon}{\sum_{i=1}^{n} p_i + \sum_{i=1}^{n} y_i + \epsilon}$
Tversky Loss $1 - \frac{\sum_{i=1}^{n}(p_i \cdot y_i) + \epsilon}{\sum_{i=1}^{n} p_i \cdot y_i + \alpha \sum_{i=1}^{n}(p_i \cdot (1-y_i)) + \beta \sum_{i=1}^{n}((1-p_i) \cdot y_i) + \epsilon}$
F-Beta Loss $\left(1 + \beta^2\right) \cdot \frac{\sum_{i=1}^{n}(p_i \cdot y_i) + \epsilon}{\beta^2 \sum_{i=1}^{n} p_i + \sum_{i=1}^{n} y_i + \epsilon}$
1
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?