1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

アンサンブル学習

Last updated at Posted at 2021-03-15

ノーフリーランチ定理

「あらゆる問題に対して、他の識別器よりも性能の高い万能なモデルやアルゴリズムは存在しない」

アンサンブル学習

  • 複数のモデルの予測結果を組み合わせて最終的な予測を行う
  • 各モデルを弱学習器という

バギング

  • 並列
  • ブートストラップ集計法(bootstrap aggregating)
  • ブートストラッピング
    • 訓練データから無作為に重複ありでサンプリング(復元抽出)する
  • ブートストラッピングしたデータで弱学習器を学習する
  • 結果を集計する

 デ
↙︎↓↘︎
デ デ デ ・・・ブートストラッピング
↓ ↓ ↓
学 学 学
↘︎ ↓ ↙︎
 集計! = 👜最終予測!

ブースティング

  • 直列
  • 弱学習器を逐次的に学習する
  • 順番に学習するので時間がかかる
  • 外れ値や誤差の影響を受けやすい
  • Xgboostが実装するアルゴリズム

デ デ デ
↓ ↓ ↓
学→学→学→🚀最終予測!

スタッキング

  • 複数のモデルの予測結果を特徴量にして学習する
  • 各モデルの重み付けも最後の学習器が学習してくれる
  • 学習データの情報を使い尽くすので学習データとテストデータの分布が同じでデータ量が多いと有効にはたらく
    • 逆に時系列データなど学習データとテストデータの分布が異なる場合は過学習しやすい
  • 教師なし学習による分類を2層目の特徴とする場合もある
  • 3層、4層とスタッキングすることもある

デ→学→予測値!↘︎
デ→学→予測値!→学→🏫最終予測!
デ→学→予測値!↗︎

1
2
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
2

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?