21
24

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

センサーで生活の乱れを可視化してみた( RaspberryPi + fluentd + Elasticsearch + Kibana )

Last updated at Posted at 2017-10-17

1. はじめに

私生活を可視化することで、生活の乱れの改善につなげたいと思います。
お部屋に設置したセンサーから得られたデータ(光、音、温度)をKibanaでダッシュボード化しました。

  • 書いたこと:データ取得用のスクリプトや、設定ファイルの内容 (ざっくり)
  • 書いていないこと:諸々のインストールの方法

2. 全体の構成

image.png

3. Sensor side

3-1. 環境

本体をテレビの影に隠しています。
image.png

  • ハードウェア
    • Raspberry Pi 3 ModelB
    • GrovePi+
    • Grove - Light Sensor
    • Grove - Sound Sensor
    • Grove - Temperature Sensor V1.2
  • OS
    • RASPBIAN STRETCH LITE 9.1
  • fluentd 0.12.40

3-2. センサーデータの取得

センサーデータを読み込むためのスクリプトを準備します。

myroom.py
#!/usr/bin/python -u

from datetime import datetime
import numpy
import time
import grovepi
import math
import json

light_sensor = 0  # A0
sound_sensor = 1  # A1
temp_sensor  = 2  # A2

light_sensor_samples = 10
sound_sensor_samples = 5000
temp_sensor_samples  = 10
temp_sensor_version  = "1.2"

def get_light_level(analog_sensor):
    samples = []
    for i in range(light_sensor_samples):
        samples.append(grovepi.analogRead(analog_sensor))
    return numpy.median(samples)

def get_sound_level(analog_sensor):
    samples = []
    for i in range(sound_sensor_samples):
        samples.append(grovepi.analogRead(analog_sensor))
    return max(samples)

def get_temp_level(analog_sensor, version):
    samples = []
    for i in range(temp_sensor_samples):
        samples.append(grovepi.temp(analog_sensor, version))
    return numpy.median(samples)

if __name__ == '__main__':
    grovepi.pinMode(light_sensor,"INPUT")
    grovepi.pinMode(sound_sensor,"INPUT")
    grovepi.pinMode(temp_sensor,"INPUT")

    while True:
        light = get_light_level(light_sensor)
        sound = get_sound_level(sound_sensor)
        temp  = get_temp_level(temp_sensor, temp_sensor_version)
        timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
        date = datetime.now().strftime("%Y-%m-%d")
        hour = int(datetime.now().strftime("%H"))
        wday = int(datetime.now().weekday())

        json_data = {
                "timestamp": timestamp,
                "hour": hour,
                "wday": wday,
                "light": light,
                "sound": sound,
                "temp": temp
                }
        encode_json_data = json.dumps(json_data)
        print encode_json_data

上記のスクリプトを実行して、標準出力をファイルに書き出します。
sudo python -u ./myroom.py >> /home/pi/myroom.log &

出力は以下のようになります。
$ tail /home/pi/myroom.log
{"sound": 255, "hour": 1, "temp": 18.82680514639611, "timestamp": "2017-10-18 01:18:37", "light": 566.0, "wday": 2}
{"sound": 255, "hour": 1, "temp": 18.82680514639611, "timestamp": "2017-10-18 01:19:10", "light": 554.0, "wday": 2}
{"sound": 375, "hour": 1, "temp": 18.82680514639611, "timestamp": "2017-10-18 01:19:43", "light": 564.0, "wday": 2}
{"sound": 255, "hour": 1, "temp": 18.82680514639611, "timestamp": "2017-10-18 01:20:16", "light": 554.0, "wday": 2}
{"sound": 255, "hour": 1, "temp": 18.82680514639611, "timestamp": "2017-10-18 01:20:48", "light": 566.5, "wday": 2}
{"sound": 259, "hour": 1, "temp": 18.82680514639611, "timestamp": "2017-10-18 01:21:21", "light": 557.5, "wday": 2}
{"sound": 255, "hour": 1, "temp": 18.82680514639611, "timestamp": "2017-10-18 01:21:54", "light": 568.0, "wday": 2}
{"sound": 255, "hour": 1, "temp": 18.82680514639611, "timestamp": "2017-10-18 01:22:27", "light": 555.0, "wday": 2}
{"sound": 255, "hour": 1, "temp": 18.82680514639611, "timestamp": "2017-10-18 01:22:59", "light": 555.0, "wday": 2}
{"sound": 255, "hour": 1, "temp": 18.82680514639611, "timestamp": "2017-10-18 01:23:32", "light": 552.0, "wday": 2}

3-3. fluentdの設定

fluentdの設定ファイルを準備します。
上記で出力したデータの増分を Server side の fluentd に forward します。

/home/pi/fluent/fluent.conf
<source>
  @type tail
  format json
  path /home/pi/myroom.log
  pos_file /home/pi/myroom.log.pos
  tag log.myroom
</source>

<match log.myroom>
  @type forward
  buffer_type file
  buffer_path /tmp/testlog-tmp.log
  <server>
    host [ホスト名]
    port 24224
  </server>
</match>

4. Server side

4-1. 環境

  • さくらVPS 1GBプラン
  • CentOS 7.4
  • fluentd(td-agent) 0.12.40
  • Elasticsearch 5.6.2
  • Kibana 5.6.2

4-2. fluentd(td-agent)の設定

Sensor side から送られてきたデータをElasticsearchに格納します。

/etc/td-agent/td-agent.conf
<source>
  type forward
  port 24224
  bind 0.0.0.0
</source>

<match log.myroom>
  type elasticsearch
  host localhost
  port 9200
  index_name myroom
  logstash_format true
  logstash_prefix myroom
</match>

4-3. Elasticsearchの設定

ほとんどデフォルトのまま使っています。

/etc/elasticsearch/elasticsearch.yml
(空)

4-4. Kibanaの設定

アクセス元IPを制限しないように設定します。

/etc/kibana/kibana.yml
server.host: "0.0.0.0"

5. 完成したダッシュボード

私生活の乱れが可視化されました。
image.png

説明を省いていますが、別途認証を入れています。公開すると防犯上よくないので気をつけましょう。

21
24
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
21
24

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?