Why not login to Qiita and try out its useful features?

We'll deliver articles that match you.

You can read useful information later.

2
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

カーネル法を詳しくみてみる

Posted at

カーネル法の定義

データを高次元の特徴空間に写像する。

線型から非線形へ

linear regressionと同じように、線形から非線形へ拡張できる。

\\ f(x) = \sum_{k = 1} ^ d w_i \phi_i(x)

$${\\ f(x) = \sum_{k = 1} ^ d w_i \phi_i(x) }$$

パーセプトロン法(ざっくり言えばカーネル法の線型バージョン)とは、


w ^ \ast = armgin \sum_{k = 1} ^ n l_P(w;y_i,x_i)

\\ where  \ l_p(w;y_i,x_i) = max(0, -y_iw^tx_i)
$${ w ^ \ast = armgin \sum_{k = 1} ^ n l_P(w;y_i,x_i) \\ where \ l_p(w;y_i,x_i) = max(0, -y_iw^tx_i) }$$

これを、確率的降下勾配法を使って解を求める。

さらにreformulationして見てると、


R( \alpha)= min_{\alpha_{1:n}} \sum_{i = 1}^nmax \{ 0, - \sum_{j = 1}^n\alpha_jy_iy_jx_i^Tx_j \}
$${ R( \alpha)= min_{\alpha_{1:n}} \sum_{i = 1}^nmax \{ 0, - \sum_{j = 1}^n\alpha_jy_iy_jx_i^Tx_j \} }$$

ここから線型から非線形に拡張していく。

x \mapsto \phi(x)
\\ x^Tx \mapsto \phi(x)^T\phi(x) =:k(x,x')
$${x \mapsto \phi(x) \\ x^Tx \mapsto \phi(x)^T\phi(x) =:k(x,x') }$$

この$ x^Tx$の計算コストが高いので、ここでカーネルが出てくる。

カーネルの種類

Linear kernel

k(x, x^T)= x^Tx
$${k(x, x^T)= x^Tx }$$

Polynominal kernel

k(x, x^T) = (x^Tx + 1)^T
$${k(x, x^T) = (x^Tx + 1)^T }$$

##RBF

k(x, x^T) = exp(-||x - x||_2^2 / \ h^2)
$${k(x, x^T) = exp(-||x - x||_2^2 / \ h^2) }$$
2
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
2
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?