0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

backpropagation memo

Last updated at Posted at 2016-10-23
  • 岡谷貴之「深層学習」のBPのメモ
  • scalaのMLP実装用
E_n=E({\bf W}^{(1)},{\bf W}^{(2)},{\bf W}^{(3)},\cdots, {\bf W}^{(n)})
  • n layer MLP
  • $E$はloss function or 目的関数
  • $W$はweight matrix
\begin{eqnarray}
{\bf u}^{(l+1} 
 &=& {\bf W}^{(l+1)} \cdot {\bf z}^{(l)} \\
 &=& {\bf W}^{(l+1)} \cdot f({\bf u}^{(l)})
\end{eqnarray}

ここで $f$はactivation function

\begin{eqnarray}
\frac{ \partial{E} }{ \partial {\bf W}^{(l)} } 
 &=& \frac{ \partial{E} }{ \partial {\bf u}^{(l)} }
  \frac{ \partial {\bf u}^{(l)} }{ \partial {\bf W}^{(l)}} \\       
 &=& \frac{ \partial{E} }{ \partial {\bf u}^{(l)} }
  {\bf z}^{(l-1)} \\       
\end{eqnarray}

ここで,

\begin{eqnarray}
 \frac{ \partial{E} }{ \partial {\bf u}^{(l)} }
  &=& \frac{ \partial{E} }{ \partial {\bf u}^{(l+1)} } 
   \frac{ \partial {\bf u}^{(l+1)} }{ \partial {\bf u}^{(l)} } \\
  &=& \frac{ \partial{E} }{ \partial {\bf u}^{(l+1)} } 
   \left\{ {\bf W}^{(l+1)} \odot f^{'}( {\bf u}^{(l)} ) \right\} 
\end{eqnarray}

ここで

{\bf \delta}^{(l)} =  \frac{ \partial{E} }{ \partial {\bf u}^{(l)} }

とすると

\begin{eqnarray}
\frac{ \partial{E} }{ \partial {\bf W}^{(l)} } 
 &=& {\bf \delta}^{(l)} {\bf z}^{(l-1)} \\       

{\bf \delta}^{(l)} &=& {\bf \delta}^{(l+1)} 
 \left\{ {\bf W}^{(l+1)} \odot f^{'}( {\bf u}^{(l)} ) \right\}  
\end{eqnarray}

となる.

これが逆伝播法

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?