モデルの保存と取り出し
scikit-learn
import pickle
with open('model.pickle', mode='wb') as fp:
pickle.dump(clf, fp)
import pickle
with open('model.pickle', mode='rb') as fp:
clf = pickle.load(fp)
clf.predict(df)
XGBoost
import xgboost as xgb
import pickle
# save the model
model = xgb.XGBClassifier(max_depth=4)
model.fit(X_train, y_train)
pickle.dump(model, open("xgb_model.pickle", "wb"))
# load model from file
loaded_model = pickle.load(open("xgb_model.pickle", "rb"))
y_pred_proba = loaded_model.predict_proba(X_test)
y_pred = loaded_model.predict(X_test)
chainer
# save model
from chainer import serializers
model = L.Classifier(myDNN(100, 500, 10))
serializers.save_npz("mymodel.npz", model)
# load model
from chainer import serializers
model = L.Classifier(myDNN(100, 500, 10)) # saveした時と同じ構成
serializers.load_npz("mymodel.npz", model)
※注意
セーブした時と、同じ構成でmodelを作ってあげないとロードできない。