0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

インピーダンスマッチ

Posted at
import numpy as np
import matplotlib.pyplot as plt

# Constants
beta = 2 * np.pi / 0.3  # Assuming a wavelength λ = 0.3 for demonstration
z_values = np.linspace(0, 0.3, 500)  # Position along the transmission line
ZL = 50 + 30j  # Load impedance (example values)
ZS = 75  # Source impedance (example value)
Gamma_0 = 0.2 + 0.6j  # Initial reflection coefficient (example value)

# Calculating input impedance Z_in(z) and reflection coefficient Gamma(z)
Z_in = ZS * (ZL + 1j * ZS * np.tan(beta * z_values)) / (ZS + 1j * ZL * np.tan(beta * z_values))
Gamma = Gamma_0 * np.exp(-2j * beta * z_values)

# Normalize the input impedance for Smith Chart
Z_norm = Z_in / ZS

# Plot Reflection Coefficient
plt.figure(figsize=(10, 5))
plt.subplot(1, 2, 1)
plt.plot(z_values, np.abs(Gamma), label='Reflection Coefficient |Γ(z)|')
plt.xlabel('Position z (m)')
plt.ylabel('Magnitude of Γ(z)')
plt.title('Reflection Coefficient |Γ(z)| vs Position z')
plt.grid(True)
plt.legend()

# Plot Input Impedance Z_in(z)
plt.subplot(1, 2, 2)
plt.plot(z_values, np.real(Z_in), label='Real(Z_in(z))')
plt.plot(z_values, np.imag(Z_in), label='Imag(Z_in(z))')
plt.xlabel('Position z (m)')
plt.ylabel('Impedance Z_in(z) (Ω)')
plt.title('Input Impedance Z_in(z) vs Position z')
plt.grid(True)
plt.legend()

plt.tight_layout()
plt.show()

# Alternative Smith Chart Plot using Polar Coordinates
plt.figure(figsize=(8, 8))
plt.polar(np.angle(Z_norm), np.abs(Z_norm), label='Normalized Impedance Z_norm(z)')
plt.title('Alternative Smith Chart (Polar Plot) of Normalized Impedance')
plt.legend()
plt.show()

# Impedance Chart (Real vs Imaginary parts)
plt.figure(figsize=(8, 6))
plt.plot(np.real(Z_in), np.imag(Z_in), label='Z_in(z)')
plt.xlabel('Real Part of Z_in(z) (Ω)')
plt.ylabel('Imaginary Part of Z_in(z) (Ω)')
plt.title('Impedance Chart')
plt.grid(True)
plt.legend()
plt.show()
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?