0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

確率統計メモ

Last updated at Posted at 2024-07-03
# ベイズの定理を計算する関数
def bayes_theorem(prior_A, likelihood_B_given_A, prior_B):
    posterior_A_given_B = (likelihood_B_given_A * prior_A) / prior_B
    return posterior_A_given_B

# 事前確率P(A)
prior_A = 0.01

# 尤度P(B|A)
likelihood_B_given_A = 0.8

# 周辺確率P(B)
prior_B = 0.02

# ベイズの定理を使って事後確率P(A|B)を計算
posterior_A_given_B = bayes_theorem(prior_A, likelihood_B_given_A, prior_B)

print(f"P(A|B): {posterior_A_given_B:.4f}")
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import rv_discrete

# 離散型確率分布の定義
# ここでは、1から6までの値を持つサイコロの確率分布を考える
values = [1, 2, 3, 4, 5, 6]
probabilities = [1/6] * 6  # 各目が出る確率は1/6

# 離散型確率分布のインスタンスを作成
custom_dist = rv_discrete(name='custom', values=(values, probabilities))

# 確率質量関数(PMF)のプロット
x = np.arange(1, 7)
pmf = custom_dist.pmf(x)

plt.figure(figsize=(8, 6))
plt.stem(x, pmf, basefmt=" ", use_line_collection=True)
plt.xlabel('Value')
plt.ylabel('Probability')
plt.title('Probability Mass Function (PMF)')
plt.grid()
plt.show()

# 累積分布関数(CDF)のプロット
cdf = custom_dist.cdf(x)

plt.figure(figsize=(8, 6))
plt.step(x, cdf, where='mid')
plt.xlabel('Value')
plt.ylabel('Cumulative Probability')
plt.title('Cumulative Distribution Function (CDF)')
plt.grid()
plt.show()

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns

# 正規分布に従うデータを生成
mean = 0  # 平均
std_dev = 1  # 標準偏差
num_samples = 1000  # サンプル数

data = np.random.normal(mean, std_dev, num_samples)

# データの基本統計量を計算
mean_calculated = np.mean(data)
std_dev_calculated = np.std(data)
variance_calculated = np.var(data)

print(f'Calculated Mean: {mean_calculated}')
print(f'Calculated Standard Deviation: {std_dev_calculated}')
print(f'Calculated Variance: {variance_calculated}')

# ヒストグラムとカーネル密度推定 (KDE) プロットを描画
sns.histplot(data, kde=True, bins=30)
plt.title('Histogram and KDE of Normally Distributed Data')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.show()


import matplotlib.pyplot as plt
import numpy as np

def calculate_mean_variance(values, probabilities):
    if len(values) != len(probabilities):
        raise ValueError("The length of values and probabilities must be the same.")
    if not all(0 <= p <= 1 for p in probabilities):
        raise ValueError("Probabilities must be between 0 and 1.")
    if abs(sum(probabilities) - 1.0) > 1e-6:
        raise ValueError("The sum of probabilities must be 1.")

    mean = sum(value * probability for value, probability in zip(values, probabilities))
    variance = sum((value - mean) ** 2 * probability for value, probability in zip(values, probabilities))
    
    return mean, variance

def plot_distribution(values, probabilities):
    mean, variance = calculate_mean_variance(values, probabilities)
    
    plt.bar(values, probabilities, color='skyblue', alpha=0.7, label='Probability')
    plt.axvline(x=mean, color='red', linestyle='--', label=f'Mean: {mean:.2f}')
    plt.axvline(x=mean + np.sqrt(variance), color='green', linestyle='--', label=f'Mean + StdDev: {mean + np.sqrt(variance):.2f}')
    plt.axvline(x=mean - np.sqrt(variance), color='green', linestyle='--', label=f'Mean - StdDev: {mean - np.sqrt(variance):.2f}')
    
    plt.xlabel('Values')
    plt.ylabel('Probabilities')
    plt.title('Probability Distribution with Mean and Variance')
    plt.legend()
    plt.show()

# Example usage
values = [1, 2, 3, 4, 5]
probabilities = [0.1, 0.2, 0.3, 0.2, 0.2]

plot_distribution(values, probabilities)

import matplotlib.pyplot as plt
import numpy as np

def calculate_mean_variance(values, probabilities):
    if len(values) != len(probabilities):
        raise ValueError("The length of values and probabilities must be the same.")
    if not all(0 <= p <= 1 for p in probabilities):
        raise ValueError("Probabilities must be between 0 and 1.")
    if abs(sum(probabilities) - 1.0) > 1e-6:
        raise ValueError("The sum of probabilities must be 1.")

    mean = sum(value * probability for value, probability in zip(values, probabilities))
    variance = sum((value - mean) ** 2 * probability for value, probability in zip(values, probabilities))
    
    return mean, variance

def plot_distribution(values, probabilities):
    mean, variance = calculate_mean_variance(values, probabilities)
    
    plt.bar(values, probabilities, color='skyblue', alpha=0.7, label='Probability')
    plt.axvline(x=mean, color='red', linestyle='--', label=f'Mean: {mean:.2f}')
    plt.axvline(x=mean + np.sqrt(variance), color='green', linestyle='--', label=f'Mean + StdDev: {mean + np.sqrt(variance):.2f}')
    plt.axvline(x=mean - np.sqrt(variance), color='green', linestyle='--', label=f'Mean - StdDev: {mean - np.sqrt(variance):.2f}')
    
    plt.xlabel('Values')
    plt.ylabel('Probabilities')
    plt.title('Probability Distribution with Mean and Variance')
    plt.legend()
    plt.show()

# Example usage
values = [1, 2, 3, 4, 5]
probabilities = [0.1, 0.2, 0.3, 0.2, 0.2]

plot_distribution(values, probabilities)

import numpy as np
import matplotlib.pyplot as plt

# 確率変数Xの分布を定義 (ここでは平均0、標準偏差1の正規分布)
mu, sigma = 0, 1
n_samples = 100000  # サンプル数

# 確率変数Xのサンプルを生成
samples = np.random.normal(mu, sigma, n_samples)

# 関数g(X) = X^2 を定義
def g(x):
    return x**2

# サンプルに関数gを適用し、その平均を計算
g_samples = g(samples)
expected_value = np.mean(g_samples)

# 結果を出力
print(f"関数g(X)の期待値: {expected_value}")

# ヒストグラムをプロット
plt.figure(figsize=(10, 6))
plt.hist(g_samples, bins=50, density=True, alpha=0.6, color='g', label='g(X) samples')

# 期待値を垂直線でプロット
plt.axvline(expected_value, color='r', linestyle='dashed', linewidth=2, label=f'Expected Value: {expected_value:.2f}')

plt.title('Histogram of g(X) = X^2 with Expected Value')
plt.xlabel('g(X)')
plt.ylabel('Density')
plt.legend()
plt.show()

import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

# 二項分布のパラメータ
n = 50
p = 0.1

# ポアソン分布のパラメータ
lambda_poisson = n * p

# 二項分布の確率質量関数 (PMF)
x_binom = np.arange(0, n+1)
pmf_binom = stats.binom.pmf(x_binom, n, p)

# ポアソン分布の確率質量関数 (PMF)
x_poisson = np.arange(0, 20)
pmf_poisson = stats.poisson.pmf(x_poisson, lambda_poisson)

# プロット
plt.figure(figsize=(12, 6))

plt.subplot(1, 2, 1)
plt.bar(x_binom, pmf_binom, alpha=0.7, label='Binomial')
plt.xlabel('Number of successes')
plt.ylabel('Probability')
plt.title('Binomial Distribution')
plt.legend()

plt.subplot(1, 2, 2)
plt.bar(x_poisson, pmf_poisson, alpha=0.7, label='Poisson', color='orange')
plt.xlabel('Number of events')
plt.ylabel('Probability')
plt.title('Poisson Distribution')
plt.legend()

plt.tight_layout()
plt.show()



import numpy as np
import matplotlib.pyplot as plt
import scipy.stats as stats

# ポアソン分布のパラメータ
lambda_param = 5

# x軸の範囲を設定
x = np.arange(0, 15)

# ポアソン分布の確率質量関数を計算
pmf = stats.poisson.pmf(x, mu=lambda_param)

# 平均と分散を計算
mean = lambda_param
variance = lambda_param

# グラフをプロット
plt.figure(figsize=(10, 6))
plt.stem(x, pmf, use_line_collection=True)
plt.title(f'Poisson Distribution (λ={lambda_param})')
plt.xlabel('Number of events')
plt.ylabel('Probability')
plt.grid(True)

# 平均と分散を表示
plt.axvline(mean, color='r', linestyle='dashed', linewidth=1, label=f'Mean = {mean}')
plt.legend()

# プロットの表示
plt.show()



import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

# 平均と分散を設定
mu = 0  # 平均
sigma = 1  # 分散

# 正規分布の確率密度関数を生成
x = np.linspace(mu - 3*sigma, mu + 3*sigma, 100)
y = norm.pdf(x, mu, sigma)

# グラフの描画
plt.figure(figsize=(8, 6))
plt.plot(x, y, label=f'Normal Distribution ($\mu={mu}$, $\sigma={sigma}$)')
plt.title('Normal Distribution')
plt.xlabel('x')
plt.ylabel('Probability Density')
plt.legend()
plt.grid(True)
plt.show()

import matplotlib.pyplot as plt
import numpy as np

# Sample data
data = np.random.randn(100)  # Generate 100 random data points

# Calculate minimum, Q1, median, Q3, and maximum
min_val = np.min(data)
q1 = np.percentile(data, 25)
median = np.median(data)
q3 = np.percentile(data, 75)
max_val = np.max(data)

print(f"Minimum: {min_val}")
print(f"Q1: {q1}")
print(f"Median: {median}")
print(f"Q3: {q3}")
print(f"Maximum: {max_val}")

# Plot boxplot
plt.boxplot(data)
plt.title('Boxplot')
plt.ylabel('Value')
plt.show()

import numpy as np
import matplotlib.pyplot as plt

# Data points
x = np.array([2, 4, 9])
y = np.array([3, 7, 11])

# Calculate means
mean_x = np.mean(x)
mean_y = np.mean(y)

# Calculate variances and covariance
variance_x = np.var(x, ddof=0)  # ddof=0 for population variance
covariance_xy = np.cov(x, y, ddof=0)[0, 1]  # [0, 1] selects the covariance

# Calculate slope and intercept
A = covariance_xy / variance_x
B = mean_y - A * mean_x

# Line equation
line_x = np.linspace(min(x), max(x), 100)
line_y = A * line_x + B

# Plotting the data points and the line of best fit
plt.figure(figsize=(8, 6))
plt.scatter(x, y, color='blue', label='Data points')
plt.plot(line_x, line_y, color='red', label=f'Best fit line: y = {A:.2f}x + {B:.2f}')
plt.xlabel('X')
plt.ylabel('Y')
plt.title('Linear Regression using Least Squares Method')
plt.legend()
plt.grid(True)
plt.show()

import numpy as np
import matplotlib.pyplot as plt

# サンプルデータの生成
np.random.seed(0)
data = np.random.randn(1000)  # 正規分布に従うランダムデータ

# ヒストグラムのパラメータ
num_bins = 20  # 階級数

# ヒストグラムの計算
counts, bin_edges = np.histogram(data, bins=num_bins)

# 階級値(ビンの中心)を計算
bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2

# プロット
plt.figure(figsize=(10, 6))

# ヒストグラムをプロット
plt.hist(data, bins=num_bins, edgecolor='k', alpha=0.7)

# 階級値をプロット
plt.scatter(bin_centers, counts, color='red', zorder=5)
for center, count in zip(bin_centers, counts):
    plt.text(center, count, str(count), ha='center', va='bottom')

plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Histogram with Class Intervals and Class Values')

plt.show()

# 階級、階級値、度数の表示
for i in range(num_bins):
    print(f"Class {i+1}: Range({bin_edges[i]:.2f}, {bin_edges[i+1]:.2f}), Class Value: {bin_centers[i]:.2f}, Frequency: {counts[i]}")


import numpy as np
import matplotlib.pyplot as plt

# サンプルデータの生成
np.random.seed(0)
data = np.random.randn(1000)  # 正規分布に従うランダムデータ

# ヒストグラムのパラメータ
num_bins = 20  # 階級数

# ヒストグラムの計算
counts, bin_edges = np.histogram(data, bins=num_bins)

# 相対度数の計算
relative_counts = counts / counts.sum()

# 累積度数の計算
cumulative_counts = np.cumsum(counts)

# 累積相対度数の計算
cumulative_relative_counts = np.cumsum(relative_counts)

# 階級値(ビンの中心)を計算
bin_centers = (bin_edges[:-1] + bin_edges[1:]) / 2

# プロット
plt.figure(figsize=(14, 8))

# ヒストグラム(度数分布)
plt.subplot(3, 1, 1)
plt.hist(data, bins=num_bins, edgecolor='k', alpha=0.7)
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Histogram (Frequency Distribution)')

# 相対度数分布
plt.subplot(3, 1, 2)
plt.bar(bin_centers, relative_counts, width=(bin_edges[1] - bin_edges[0]), edgecolor='k', alpha=0.7)
plt.xlabel('Value')
plt.ylabel('Relative Frequency')
plt.title('Relative Frequency Distribution')

# 累積度数分布
plt.subplot(3, 1, 3)
plt.plot(bin_centers, cumulative_counts, marker='o', linestyle='-')
plt.xlabel('Value')
plt.ylabel('Cumulative Frequency')
plt.title('Cumulative Frequency Distribution')

plt.tight_layout()
plt.show()

# 度数、相対度数、累積度数の表示
for i in range(num_bins):
    print(f"Class {i+1}: Range({bin_edges[i]:.2f}, {bin_edges[i+1]:.2f}), "
          f"Class Value: {bin_centers[i]:.2f}, Frequency: {counts[i]}, "
          f"Relative Frequency: {relative_counts[i]:.4f}, "
          f"Cumulative Frequency: {cumulative_counts[i]}, "
          f"Cumulative Relative Frequency: {cumulative_relative_counts[i]:.4f}")

import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from scipy.stats import norm

# Generate sample data
np.random.seed(0)
data = np.random.randn(1000)  # Normally distributed data

# Plot KDE and Gaussian curve
plt.figure(figsize=(10, 6))

# KDE using Seaborn
sns.kdeplot(data, fill=True, color='blue', label='KDE')

# Gaussian curve
mean, std_dev = np.mean(data), np.std(data)
x = np.linspace(min(data), max(data), 1000)
gaussian_curve = norm.pdf(x, mean, std_dev)
plt.plot(x, gaussian_curve, color='red', linestyle='--', label='Gaussian Curve')

# Labels and Title
plt.xlabel('Value')
plt.ylabel('Density')
plt.title('Kernel Density Estimation (KDE) and Gaussian Curve')
plt.legend()

# Show plot
plt.show()


import numpy as np

# Sample data (replace with your dataset)
data = np.array([10, 12, 15, 14, 11, 13, 15, 12, 13, 10])

# Calculate sample mean
sample_mean = np.mean(data)

# Calculate sample variance (biased)
sample_variance_biased = np.var(data)

# Calculate sample variance (unbiased)
sample_variance_unbiased = np.var(data, ddof=1)

# Calculate sample standard deviation
sample_std_deviation = np.std(data)

# Calculate coefficient of variation
coefficient_of_variation = (sample_std_deviation / sample_mean) * 100

# Print results
print(f"Sample Mean: {sample_mean}")
print(f"Sample Variance (biased): {sample_variance_biased}")
print(f"Sample Variance (unbiased): {sample_variance_unbiased}")
print(f"Sample Standard Deviation: {sample_std_deviation}")
print(f"Coefficient of Variation: {coefficient_of_variation:.2f}%")



import numpy as np
import matplotlib.pyplot as plt

# Sample data (replace with your dataset)
np.random.seed(0)
data1 = np.random.normal(100, 10, 200)
data2 = np.random.normal(90, 20, 200)
data3 = np.random.normal(80, 30, 200)
data = [data1, data2, data3]

# Create a boxplot
plt.figure(figsize=(10, 6))
plt.boxplot(data, vert=True, patch_artist=True)

# Customize labels and title
plt.xticks([1, 2, 3], ['Data1', 'Data2', 'Data3'])
plt.xlabel('Dataset')
plt.ylabel('Value')
plt.title('Boxplot of Datasets')

# Show plot
plt.grid(True)
plt.show()


import numpy as np

# Sample data (replace with your dataset)
data1 = np.array([1, 2, 3, 4, 5])
data2 = np.array([5, 4, 3, 2, 1])

# Calculate covariance between data1 and data2
covariance = np.cov(data1, data2)[0, 1]

# Calculate covariance matrix for data1 and data2
covariance_matrix = np.cov(data1, data2)

# Calculate Pearson's correlation coefficient (r) between data1 and data2
correlation_coefficient = np.corrcoef(data1, data2)[0, 1]

# Calculate correlation matrix for data1 and data2
correlation_matrix = np.corrcoef(data1, data2)

# Print results
print(f"Covariance between data1 and data2: {covariance}")
print(f"Covariance matrix:\n{covariance_matrix}")
print(f"Pearson's correlation coefficient (r): {correlation_coefficient}")
print(f"Correlation matrix:\n{correlation_matrix}")


import seaborn as sns
import matplotlib.pyplot as plt

# Sample data (replace with your dataset)
data = sns.load_dataset("tips")

# Create violin plot
plt.figure(figsize=(10, 6))
sns.violinplot(x="day", y="total_bill", data=data)

# Customize labels and title
plt.xlabel('Day of the Week')
plt.ylabel('Total Bill')
plt.title('Violin Plot of Total Bill by Day')

# Show plot
plt.grid(True)
plt.show()


# Sample data for illustration
# Suppose we have a deck of cards
deck = {
    'suits': ['Hearts', 'Diamonds', 'Clubs', 'Spades'],
    'values': ['Ace', '2', '3', '4', '5', '6', '7', '8', '9', '10', 'Jack', 'Queen', 'King']
}

# Define probabilities for illustration
prob_suit_hearts = 1/4  # Probability of drawing a Heart suit
prob_value_queen = 1/13  # Probability of drawing a Queen card
prob_value_queen_given_hearts = 1/13  # Conditional probability of drawing a Queen given it's a Heart

# Addition Rule: P(A or B) = P(A) + P(B) - P(A and B)
prob_heart_or_queen = prob_suit_hearts + prob_value_queen - prob_value_queen_given_hearts
print(f"Probability of drawing a Heart or a Queen: {prob_heart_or_queen}")

# Conditional Probability: P(A | B) = P(A and B) / P(B)
prob_queen_given_hearts = prob_value_queen_given_hearts / prob_suit_hearts
print(f"Conditional Probability of drawing a Queen given it's a Heart: {prob_queen_given_hearts}")

# Multiplication Rule: P(A and B) = P(A | B) * P(B)
prob_queen_and_hearts = prob_queen_given_hearts * prob_suit_hearts
print(f"Probability of drawing a Queen and it's a Heart: {prob_queen_and_hearts}")

import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import uniform, norm

# Example 1: Discrete Uniform Distribution
# Generate random data for illustration
data_uniform = np.random.randint(1, 7, 1000)  # Random integers from 1 to 6

# Calculate probabilities using PMF (Probability Mass Function)
counts, bins = np.histogram(data_uniform, bins=6, range=(1, 7))
probabilities = counts / len(data_uniform)

# Plotting the PMF
plt.figure(figsize=(10, 6))
plt.bar(bins[:-1], probabilities, width=0.5, align='center', alpha=0.7)
plt.xlabel('Outcome')
plt.ylabel('Probability')
plt.title('Probability Mass Function (PMF) of Discrete Uniform Distribution')
plt.grid(True)
plt.show()

# Example 2: Continuous Normal Distribution
# Generate random data for illustration
data_normal = np.random.normal(0, 1, 1000)  # Random data from a standard normal distribution

# Fit a normal distribution to the data (optional)
mu, std_dev = norm.fit(data_normal)

# Plotting the PDF (Probability Density Function)
plt.figure(figsize=(10, 6))
plt.hist(data_normal, bins=30, density=True, alpha=0.7, color='blue')
plt.xlabel('Value')
plt.ylabel('Probability Density')
plt.title('Probability Density Function (PDF) of Normal Distribution')
plt.grid(True)

# Overlay the fitted PDF
xmin, xmax = plt.xlim()
x = np.linspace(xmin, xmax, 100)
p = norm.pdf(x, mu, std_dev)
plt.plot(x, p, 'k', linewidth=2)
plt.show()


import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import uniform

# Parameters for the uniform distribution
a = 0   # Lower bound
b = 10  # Upper bound

# Generate random data for illustration (Uniform distribution)
data_uniform = uniform.rvs(size=1000, loc=a, scale=b-a)

# Calculate PDF (Probability Density Function) for uniform distribution
x = np.linspace(a, b, 100)
pdf_uniform = uniform.pdf(x, loc=a, scale=b-a)

# Calculate CDF (Cumulative Distribution Function) for uniform distribution
cdf_uniform = uniform.cdf(x, loc=a, scale=b-a)

# Plotting PDF and CDF
plt.figure(figsize=(12, 6))

# PDF plot
plt.subplot(1, 2, 1)
plt.plot(x, pdf_uniform, 'b-', label='PDF')
plt.title('Probability Density Function (PDF) of Uniform Distribution')
plt.xlabel('Value')
plt.ylabel('Density')
plt.grid(True)
plt.legend()

# CDF plot
plt.subplot(1, 2, 2)
plt.plot(x, cdf_uniform, 'r-', label='CDF')
plt.title('Cumulative Distribution Function (CDF) of Uniform Distribution')
plt.xlabel('Value')
plt.ylabel('Probability')
plt.grid(True)
plt.legend()

plt.tight_layout()
plt.show()



import numpy as np
import matplotlib.pyplot as plt

# Parameters
population_size = 10000   # Population size
sample_size = 100         # Sample size
num_samples = 10000       # Number of samples to draw

# Generate population data (non-normal distribution example)
population = np.random.poisson(5, population_size)  # Example of a non-normal distribution (Poisson)

# Function to calculate mean of samples
def calculate_sample_means(population, sample_size, num_samples):
    sample_means = []
    for _ in range(num_samples):
        sample = np.random.choice(population, size=sample_size, replace=True)
        sample_mean = np.mean(sample)
        sample_means.append(sample_mean)
    return sample_means

# Calculate sample means
sample_means = calculate_sample_means(population, sample_size, num_samples)

# Calculate mean and variance of sample means
mean_of_means = np.mean(sample_means)
variance_of_means = np.var(sample_means)

# Plotting the distribution of sample means
plt.figure(figsize=(10, 6))
plt.hist(sample_means, bins=50, density=True, color='blue', alpha=0.7)
plt.title('Distribution of Sample Means (Central Limit Theorem)')
plt.xlabel('Sample Mean')
plt.ylabel('Density')
plt.grid(True)

# Overlay a normal distribution with the same mean and variance
normal_dist = np.random.normal(mean_of_means, np.sqrt(variance_of_means), num_samples)
plt.hist(normal_dist, bins=50, density=True, color='red', histtype='step', linewidth=2)

plt.legend(['Sample Means', 'Normal Distribution'])
plt.show()

# Print mean and variance of sample means
print(f"Mean of Sample Means: {mean_of_means}")
print(f"Variance of Sample Means: {variance_of_means}")

import numpy as np
import matplotlib.pyplot as plt

# Generating a random sample from a normal distribution
np.random.seed(0)
population = np.random.normal(loc=50, scale=10, size=1000)  # Example population

# Population mean
population_mean = np.mean(population)

# Population standard deviation
population_std = np.std(population)

# Plotting histogram of population
plt.figure(figsize=(10, 6))
plt.hist(population, bins=30, alpha=0.7, color='blue', edgecolor='black')
plt.axvline(population_mean, color='red', linestyle='dashed', linewidth=1.5, label='Population Mean')
plt.xlabel('Value')
plt.ylabel('Frequency')
plt.title('Population Distribution')
plt.legend()
plt.grid(True)
plt.show()

print(f"Population Mean: {population_mean:.2f}")
print(f"Population Standard Deviation: {population_std:.2f}")









0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?