0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

横軸t 微分積分学

Posted at

基本の微分(d/dt)

  1. d(t^n)/dt = n*t^(n-1)
  2. d(e^t)/dt = e^t
  3. d(a^t)/dt = a^t*ln(a)
  4. d(ln t)/dt = 1/t
  5. d(sin t)/dt = cos t
  6. d(cos t)/dt = -sin t
  7. d(tan t)/dt = sec^2 t
  8. d(cot t)/dt = -csc^2 t
  9. d(sec t)/dt = sec t * tan t
  10. d(csc t)/dt = -csc t * cot t

合成関数(チェーンルール)

  1. d(f(g(t)))/dt = f’(g(t))*g’(t)
  2. d(sin(at))/dt = a*cos(at)
  3. d(cos(at))/dt = -a*sin(at)
  4. d(e^(at))/dt = a*e^(at)
  5. d(ln(at))/dt = 1/t

積分(∫ dt)

  1. ∫ t^n dt = t^(n+1)/(n+1) + C (n≠-1)
  2. ∫ 1/t dt = ln|t| + C
  3. ∫ e^t dt = e^t + C
  4. ∫ a^t dt = a^t / ln a + C
  5. ∫ sin t dt = -cos t + C
  6. ∫ cos t dt = sin t + C
  7. ∫ sec^2 t dt = tan t + C
  8. ∫ csc^2 t dt = -cot t + C
  9. ∫ sec t * tan t dt = sec t + C
  10. ∫ csc t * cot t dt = -csc t + C

定積分(0→T)

  1. ∫_0^T t dt = T^2/2
  2. ∫_0^T t^2 dt = T^3/3
  3. ∫_0^T e^t dt = e^T - 1
  4. ∫_0^T sin t dt = 1 - cos T
  5. ∫_0^T cos t dt = sin T

運動の基本(時間 t 秒)

  1. v(t) = dx/dt
  2. a(t) = dv/dt
  3. x(t) = ∫ v(t) dt
  4. v(t) = ∫ a(t) dt
  5. F(t) = m*a(t)
  6. p(t) = m*v(t)
  7. W = ∫ F(t)*v(t) dt
  8. KE = 1/2 m*v(t)^2
  9. P(t) = dW/dt
  10. Momentum = ∫ F dt

指数・対数関数

  1. d/dt (e^(kt)) = k e^(kt)
  2. ∫ e^(kt) dt = (1/k) e^(kt) + C
  3. d/dt (ln(1+t)) = 1/(1+t)
  4. ∫ 1/(1+t) dt = ln(1+t)
  5. d/dt (a^(bt)) = b*ln(a)*a^(bt)

三角関数の積分

  1. ∫ sin(at) dt = -1/a cos(at) + C
  2. ∫ cos(at) dt = 1/a sin(at) + C
  3. ∫ tan t dt = -ln|cos t| + C
  4. ∫ cot t dt = ln|sin t| + C
  5. ∫ sec t dt = ln|sec t + tan t| + C
  6. ∫ csc t dt = -ln|csc t + cot t| + C

双曲線関数

  1. d(sinh t)/dt = cosh t
  2. d(cosh t)/dt = sinh t
  3. d(tanh t)/dt = sech^2 t
  4. ∫ sinh t dt = cosh t + C
  5. ∫ cosh t dt = sinh t + C

物理的応用

  1. Q(t) = ∫ I(t) dt (電気量)
  2. V(t) = L dI/dt (インダクタンス)
  3. I(t) = C dV/dt (コンデンサ)
  4. Energy = ∫ P(t) dt
  5. ω(t) = dθ/dt (角速度)
  6. α(t) = dω/dt (角加速度)
  7. θ(t) = ∫ ω(t) dt
  8. Work = ∫ F(t) dx
  9. Impulse = ∫ F(t) dt

フーリエ系

  1. ∫_0^T sin(nωt) dt = (1 - cos(nωT))/(nω)
  2. ∫_0^T cos(nωt) dt = sin(nωT)/(nω)
  3. d/dt (sin ωt + cos ωt) = ω(cos ωt - sin ωt)
  4. Parseval’s theorem (time domain integration)

高次導関数

  1. d^2x/dt^2 = acceleration
  2. d^2y/dt^2 = curvature in motion
  3. d^3x/dt^3 = jerk
  4. d^4x/dt^4 = snap
  5. d^5x/dt^5 = crackle
  6. d^6x/dt^6 = pop

ラプラス変換(時間 t 秒)

  1. L{1} = 1/s
  2. L{t} = 1/s^2
  3. L{e^(at)} = 1/(s-a)
  4. L{sin at} = a/(s^2 + a^2)
  5. L{cos at} = s/(s^2 + a^2)

確率・統計応用

  1. E[X(t)] = ∫ x f(x,t) dx
  2. Var[X(t)] = E[X^2] - (E[X])^2
  3. ∫_0^∞ e^(-λt) dt = 1/λ

エネルギー系

  1. KE(t) = ∫ F(t)*v(t) dt
  2. PE(t) = ∫ F(t) dx
  3. E_total = KE + PE
  4. Heat Q = ∫ I^2 R dt

数列・和の極限を微積に

  1. lim_{Δt→0} (Δx/Δt) = dx/dt
  2. ∑ f(t) Δt → ∫ f(t) dt
  3. Average value: (1/T) ∫_0^T f(t) dt

高校~大学基礎の代表

  1. d/dt (f(t)g(t)) = f’g + fg’
  2. d/dt (f/g) = (f’g - fg’)/g^2
  3. ∫ f’(t)/f(t) dt = ln|f(t)| + C
  4. ∫ e^(at)cos(bt) dt = e^(at)(a cos bt + b sin bt)/(a^2+b^2)
  5. ∫ e^(at)sin(bt) dt = e^(at)(a sin bt - b cos bt)/(a^2+b^2)

まとめ(100に調整)

  1. Taylor展開: f(t) ≈ f(0) + f’(0)t + f’’(0)t^2/2 + ...
  2. Maclaurin: e^t = 1 + t + t^2/2! + ...
  3. ∫_0^∞ e^(-at) dt = 1/a
  4. δ(t): ∫ δ(t) f(t) dt = f(0)
  5. Heaviside H(t): dH/dt = δ(t)

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?