23
26

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

pandasの基本的な操作を身体に染み込ませるための問題集を作る

Last updated at Posted at 2019-07-16

前書き

最近Kaggleのタイタニックコンペでデータ分析の学習に取り組み始めましたが、
pandasの使い方がどうしてもおぼつかない状態でした。
そのため、諸先輩方のKernelを参考によく使いそうな操作を繰り返して身体に染み込ませることにしました。

まずはタイタニックコンペのチュートリアル的なKernelを一つこなすなどして、
ある程度pandasを動かしてからご利用いただければと思います。

また、本記事はPythonインタープリタで実施することを想定しています。

記事中の解答例とは違う方法でも全く問題ございません。
より楽な方法、より一般的な方法がございましたら教えていただけますととてもありがたいです。

#0.はじめに

####pandasをimportしておく

.py
import pandas as pd

####以下のファイルを使用するのでダウンロードしておく。
pandas_train.csv (Googleドライブ)
※KaggleのタイタニックコンペのCSVファイルを適当に架空の情報に書き換えました。
Titanic: Machine Learning from Disaster | Kaggle

UNADJUSTEDNONRAW_thumb_90.jpg

####実行環境

$ python3 --version
Python 3.6.5

$ sw_vers
ProductName:	Mac OS X
ProductVersion:	10.14.5

$ pip3 show pandas
Name: pandas
Version: 0.24.2

#1.新しいDataFrameを作る

####1-1.以下のdf_sampleという名前のDataFrameを作成する

A B C D
0 a aa aaa aaaa
1 b bb bbb bbbb
2 c cc ccc cccc
3 d dd ddd dddd
4 e ee eee eeee
回答1-1
1-1.py
df_sample = pd.DataFrame({ "A" : ["a","b","c","d","e"],
                           "B" : ["aa","bb","cc","dd","ee"],
                           "C" : ["aaa","bbb","ccc","ddd","eee"],
                           "D" : ["aaaa","bbbb","cccc","dddd","eeee"]})

#>>> df_sample
#   A   B    C     D
#0  a  aa  aaa  aaaa
#1  b  bb  bbb  bbbb
#2  c  cc  ccc  cccc
#3  d  dd  ddd  dddd
#4  e  ee  eee  eeee

#2.あるCSVファイルを操作する
以下のファイルを使用する。
pandas_train.csv (Googleドライブ)

####2-1. pandas_train.csvを読み込んで変数dfに格納する

回答2-1
2-1.py
df = pd.read_csv("{ファイルパス}/pandas_train.csv")

####2-2. 2-1でdfに格納したデータをpandas_train2.csvというファイル名で出力する

回答2-2
2-2.py
df.to_csv("{ファイルパス}/pandas_train2.csv")

####2-3. pandas_train.csv内のSatisfied列を全て0に変更する

回答2-3
2-3.py
df["Satisfied"] = 0
#>>> df["Satisfied"]
#0     0
#1     0
#2     0
#3     0
#4     0
#5     0
#6     0
#7     0
#8     0
#9     0
#10    0
#11    0
#12    0
#13    0
#14    0
#15    0
#16    0
#17    0
#18    0
#19    0
#Name: Satisfied, dtype: int64

####2-4. Age列を数値で4等分にビン分割してAgeBinという列を作成する

回答2-4
2-4.py
df["AgeBin"] = pd.cut(df["Age"], 4)

#4等分にした年齢層ごとのSatisfiedの数は以下のように表示される
#>>> pd.crosstab(df["AgeBin"],df["Satisfied"])
#Satisfied      0  1
#AgeBin             
#(0.944, 15.0]  3  2
#(15.0, 29.0]   2  2
#(29.0, 43.0]   3  2
#(43.0, 57.0]   1  2

####2-5. Fare列を人数で4等分にビン分割してFareBinという列を作成する

回答2-5
2-5.py
df["FareBin"] = pd.qcut(df["Fare"], 4)

####2-6. Age列の欠損値をAge列の中央値で埋める

回答2-6
2-6.py
df["Age"].fillna(df["Age"].median(), inplace = True)
#>>> df["Age"].isnull().sum()
#0

####2-7. Embarked列の欠損値をEmbarked列の最頻値で埋める

回答2-7
2-7.py
df["Embarked"].fillna(["Embarked"].mode()[0], inplace = True)
#>>> df["Embarked"].isnull().sum()
#0

####2-8. PassengerId, Ticketという列を削除する

回答2-8
2-8.py
df.drop(["PassengerId", "Ticket"], axis=1, inplace=True)
#>>> df.columns
#Index(['Satisfied', 'Pclass', 'Sex', 'Name', 'Age', 'SibSp', 'Parch', 'Fare',
#       'Cabin', 'Embarked', 'AgeBin', 'FareBin'],
#      dtype='object')

####2-9. SibSp列の値とParch列の値の和に1を足した値を持つFamirySize列を作成する

回答2-9
2-9.py
df["FamilySize"] = df["SibSp"] + df["Parch"] + 1
#>>> df.loc[:,["FamilySize","SibSp","Parch"]]
#    FamilySize  SibSp  Parch
#0            2      1      0
#1            2      1      0
#2            1      0      0
#3            2      1      0
#4            1      0      0
#5            1      0      0
#6            1      0      0
#7            5      3      1
#8            3      0      2
#9            2      1      0
#10           3      1      1
#11           1      0      0
#12           1      0      0
#13           7      1      5
#14           1      0      0
#15           1      0      0
#16           6      4      1
#17           1      0      0
#18           2      1      0
#19           1      0      0

####2-10. 全て値が1のIsAlone列を作成し、2-9のFamilySize列が1より大きい行のみ0に変更する

回答2-10
2-10.py
df["IsAlone"] = 1
df["IsAlone"].loc[dataset["FamilySize"] > 1] = 0
#>>> df.loc[:,["IsAlone","FamilySize"]]
#    IsAlone  FamilySize
#0         0           2
#1         0           2
#2         1           1
#3         0           2
#4         1           1
#5         1           1
#6         1           1
#7         0           5
#8         0           3
#9         0           2
#10        0           3
#11        1           1
#12        1           1
#13        0           7
#14        1           1
#15        1           1
#16        0           6
#17        1           1
#18        0           2
#19        1           1

####2-11. df内のSex列, Embarked列をone-hotエンコーディングに変更する

回答2-11
2-11.py
df = pd.get_dummies(df, columns=["Sex","Embarked"])
#>>> df.head(5)
#   Satisfied  Pclass                   Name   Age  SibSp  Parch      Fare Cabin               FareBin  FamilySize  IsAlone  Sex_female  Sex_male  Embarked_Nagoya  Embarked_Osaka  Embarked_Tokyo
#0          0       3          Sato, Mr. Ren  21.0      1      0   870.000   NaN      (866.999, 966.0]           2        0           0         1                0               0               1
#1          1       1    Suzuki, Mrs. Himari  37.0      1      0  8553.996   C85  (3523.374, 8553.996]           2        0           1         0                0               1               0
#2          1       3      Tanaka, Miss. Mei  25.0      0      0   951.000   NaN      (866.999, 966.0]           1        1           1         0                0               0               1
#3          1       1         Ito, Mrs. Riko  34.0      1      0  6372.000  C123  (3523.374, 8553.996]           2        0           1         0                0               0               1
#4          0       3  Takahashi, Mr. Haruto  34.0      0      0   966.000   NaN      (866.999, 966.0]           1        1           0         1                0               0               1

####2-12. df内のSatisfied列以外を取り出してdf_1, Satisfied列とName列だけを取り出してdf_2という新しいDataframeを作成する

回答2-12
2-12.py
df_1 = df.drop(["Satisfied"], axis = 1)
#>>> df_1.head(5)
#   Pclass                   Name   Age  SibSp  Parch      Fare Cabin        AgeBin               FareBin  FamilySize  IsAlone  Sex_female  Sex_male  Embarked_Nagoya  Embarked_Osaka  Embarked_Tokyo
#0       3          Sato, Mr. Ren  21.0      1      0   870.000   NaN  (15.0, 29.0]      (866.999, 966.0]           2        0           0         1                0               0               1
#1       1    Suzuki, Mrs. Himari  37.0      1      0  8553.996   C85  (29.0, 43.0]  (3523.374, 8553.996]           2        0           1         0                0               1               0
#2       3      Tanaka, Miss. Mei  25.0      0      0   951.000   NaN  (15.0, 29.0]      (866.999, 966.0]           1        1           1         0                0               0               1
#3       1         Ito, Mrs. Riko  34.0      1      0  6372.000  C123  (29.0, 43.0]  (3523.374, 8553.996]           2        0           1         0                0               0               1
#4       3  Takahashi, Mr. Haruto  34.0      0      0   966.000   NaN  (29.0, 43.0]      (866.999, 966.0]           1        1           0         1                0               0               1

df_2 = df[["Satisfied","Name"]]
#>>> df_2.head(5)
#   Satisfied                   Name
#0          0          Sato, Mr. Ren
#1          0    Suzuki, Mrs. Himari
#2          0      Tanaka, Miss. Mei
#3          0         Ito, Mrs. Riko
#4          0  Takahashi, Mr. Haruto

#3.CSVファイルの情報を確認する
pandas_train.csvをdfに格納しなおしてから実施します。

.py
df = pd.read_csv("{ファイルパス}/pandas_train.csv")

####3-1. dfの行数と列数を表示する

回答3-1
3-1.py
df.shape
#(20, 12)

####3-2. dfの列の名前の一覧を表示する

回答3-2
3-2.py
df.columns
#Index(['PassengerId', 'Satisfied', 'Pclass', 'Sex', 'Name', 'Age', 'SibSp',
#       'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
#      dtype='object')

####3-3. dfの各列の欠損値でないデータの数とデータの型を表示する

回答3-3
3-3.py
df.info()
#<class 'pandas.core.frame.DataFrame'>
#RangeIndex: 20 entries, 0 to 19
#Data columns (total 12 columns):
#PassengerId    20 non-null int64
#Satisfied      20 non-null int64
#Pclass         20 non-null int64
#Sex            20 non-null object
#Name           20 non-null object
#Age            17 non-null float64
#SibSp          20 non-null int64
#Parch          20 non-null int64
#Ticket         20 non-null object
#Fare           20 non-null float64
#Cabin          5 non-null object
#Embarked       16 non-null object
#dtypes: float64(2), int64(5), object(5)

####3-4. dfの各列の欠損値の数を表示する

回答3-4
3-4.py
df.isnull().sum()
#PassengerId     0
#Satisfied       0
#Pclass          0
#Sex             0
#Name            0
#Age             3
#SibSp           0
#Parch           0
#Ticket          0
#Fare            0
#Cabin          15
#Embarked        4
#dtype: int64

####3-5. dfの各数値データの要約統計量を表示する

回答3-5
3-5.py
df.describe()
#       PassengerId  Satisfied     Pclass        Age      SibSp      Parch         Fare
#count     20.00000  20.000000  20.000000  17.000000  20.000000  20.000000    20.000000
#mean      10.50000   0.500000   2.450000  27.000000   0.700000   0.500000  2663.924400
#std        5.91608   0.512989   0.825578  17.779904   1.080935   1.192079  2167.066511
#min        1.00000   0.000000   1.000000   1.000000   0.000000   0.000000   867.000000
#25%        5.75000   0.000000   2.000000  13.000000   0.000000   0.000000   966.000000
#50%       10.50000   0.500000   3.000000  26.000000   0.000000   0.000000  1962.000000
#75%       15.25000   1.000000   3.000000  37.000000   1.000000   0.250000  3523.374000
#max       20.00000   1.000000   3.000000  57.000000   4.000000   5.000000  8553.996000

####3-6. dfの各数値データの要約統計量を10%刻みで表示する

回答3-6
3-6.py
df.describe(percentiles=[.1,.2,.3,.4,.5,.6,.7,.8,.9])
#       PassengerId  Satisfied     Pclass        Age      SibSp      Parch         Fare
#count     20.00000  20.000000  20.000000  17.000000  20.000000  20.000000    20.000000
#mean      10.50000   0.500000   2.450000  27.000000   0.700000   0.500000  2663.924400
#std        5.91608   0.512989   0.825578  17.779904   1.080935   1.192079  2167.066511
#min        1.00000   0.000000   1.000000   1.000000   0.000000   0.000000   867.000000
#10%        2.90000   0.000000   1.000000   2.200000   0.000000   0.000000   935.253600
#20%        4.80000   0.000000   1.800000  13.000000   0.000000   0.000000   963.000000
#30%        6.70000   0.000000   2.000000  17.800000   0.000000   0.000000  1000.297200
#40%        8.60000   0.000000   3.000000  22.600000   0.000000   0.000000  1470.398400
#50%       10.50000   0.500000   3.000000  26.000000   0.000000   0.000000  1962.000000
#60%       12.40000   1.000000   3.000000  32.400000   1.000000   0.000000  2307.600000
#70%       14.30000   1.000000   3.000000  34.600000   1.000000   0.000000  3278.700000
#80%       16.20000   1.000000   3.000000  37.800000   1.000000   1.000000  3637.396800
#90%       18.10000   1.000000   3.000000  53.400000   1.200000   1.100000  6238.350000
#max       20.00000   1.000000   3.000000  57.000000   4.000000   5.000000  8553.996000

####3-7. dfの各オブジェクト型データの要素数、ユニーク数、最頻値、最頻値の出現回数を表示

回答3-7
3-7.py
df.describe(include="O")
#           Sex                   Name    Ticket Cabin Embarked
#count       20                     20        20     5       16
#unique       2                     20        20     5        3
#top     female  Shimizu, Mrs. Tsumugi  PP 95491    G6    Tokyo
#freq        11                      1         1     1       11

####3-8. dfのSatisfied列で0の数と1の数を表示した後、0の割合と1の割合を表示

回答3-8
3-8.py
df["Satisfied"].value_counts()
#1    10
#0    10
#Name: Satisfied, dtype: int64

df["Satisfied"].value_counts()/len(df["Satisfied"])
#1    0.5
#0    0.5
#Name: Satisfied, dtype: float64

####3-9. 男女別のSatisfiedの0と1の数と割合をクロス集計で表示

回答3-9
3-9.py
pd.crosstab(df["Sex"], df["Satisfied"])
#Sex        female  male
#Satisfied              
#0               2     8
#1               9     1

pd.crosstab(df["Sex"], df["Satisfied"], normalize="index")
#Sex        female  male
#Satisfied              
#0             0.2   0.8
#1             0.9   0.1

####3-10. 各行について、Satisfiedが0であるかどうかの真偽値を表示する

回答3-10
3-10.py
df["Satisfied"] == 0
#0      True
#1     False
#2     False
#3     False
#4      True
#5      True
#6      True
#7      True
#8     False
#9     False
#10    False
#11    False
#12     True
#13     True
#14     True
#15    False
#16     True
#17    False
#18     True
#19    False

####3-11. 各行について、Satisfiedが0の行を全て表示する

回答3-11
3-11.py
df[df["Satisfied"] == 0]
#    PassengerId  Satisfied  Pclass     Sex                    Name   Age  SibSp  Parch      Ticket      Fare Cabin Embarked
#0             1          0       3    male           Sato, Mr. Ren  21.0      1      0  A/5 211711   870.000   NaN    Tokyo
#4             5          0       3    male   Takahashi, Mr. Haruto  34.0      0      0      746900   966.000   NaN    Tokyo
#5             6          0       3    male    Watanabe, Mr. Hinata   NaN      0      0      661754  1014.996   NaN   Nagoya
#6             7          0       1    male    Yamamoto, Mr. Itsuki  53.0      0      0       34926  6223.500   E46    Tokyo
#7             8          0       3    male  Nakamura, Master. Yuto   1.0      3      1      699818  2529.000   NaN      NaN
#12           13          0       3    male      Sasaki, Mr. Minato  19.0      0      0  A/5. 21511   966.000   NaN    Tokyo
#13           14          0       3    male   Yamaguchi, Mr. Hiroto  38.0      1      5      694164  3753.000   NaN    Tokyo
#14           15          0       3  female   Matsumoto, Miss. Yuna  13.0      0      0      700812   942.504   NaN      NaN
#16           17          0       3    male  Kimura, Master. Hiroto   1.0      4      1      765304  3495.000   NaN   Nagoya
#18           19          0       3  female         Saito, Mrs.Hina  30.0      1      0      691526  2160.000   NaN    Tokyo

####3-12. Satisfiedが1の行でAge列だけを表示する。ただしAgeが欠損値の行は省く

回答3-12
3-12.py
df[df["Satisfied"] == 1].Age.dropna()
#1     37.0
#2     25.0
#3     34.0
#8     26.0
#9     13.0
#10     3.0
#11    57.0
#15    54.0
#Name: Age, dtype: float64

####3-13. dfの上から5行目までを表示する

回答3-13
3-13.py
df.head(5)
#   PassengerId  Satisfied  Pclass     Sex                   Name   Age  SibSp  Parch             Ticket      Fare Cabin Embarked
#0            1          0       3    male          Sato, Mr. Ren  21.0      1      0         A/5 211711   870.000   NaN    Tokyo
#1            2          1       1  female    Suzuki, Mrs. Himari  37.0      1      0          PC 175991  8553.996   C85    Osaka
#2            3          1       3  female      Tanaka, Miss. Mei  25.0      0      0  STON/O2. 31012821   951.000   NaN      NaN
#3            4          1       1  female         Ito, Mrs. Riko  34.0      1      0             227606  6372.000  C123    Tokyo
#4            5          0       3    male  Takahashi, Mr. Haruto  34.0      0      0             746900   966.000   NaN    Tokyo

####3-14. df内のデータの中から無作為に選んだ5行を表示する

回答3-14
3-14.py
df.sample(5)
#    PassengerId  Satisfied  Pclass     Sex                  Name   Age  SibSp  Parch    Ticket    Fare Cabin Embarked
#6             7          0       1    male  Yamamoto, Mr. Itsuki  53.0      0      0     34926  6223.5   E46    Tokyo
#15           16          1       2  female    Inoue, Mrs. Kotone  54.0      0      0    497412  1920.0   NaN    Tokyo
#10           11          1       3  female  Yoshida, Miss. Yuina   3.0      1      1  PP 95491  2004.0    G6    Tokyo
#17           18          1       2    male      Hayashi, Mr. Aoi   NaN      0      0    488746  1560.0   NaN    Tokyo
#3             4          1       1  female        Ito, Mrs. Riko  34.0      1      0    227606  6372.0  C123    Tokyo

####3-15. df内のAge列だけを表示する

回答3-15
3-15.py
df["Age"]
#または
#df.Age

#0     21.0
#1     37.0
#2     25.0
#3     34.0
#4     34.0
#5      NaN
#6     53.0
#7      1.0
#8     26.0
#9     13.0
#10     3.0
#11    57.0
#12    19.0
#13    38.0
#14    13.0
#15    54.0
#16     1.0
#17     NaN
#18    30.0
#19     NaN
#Name: Age, dtype: float64

####3-16. df内のAge列とName列だけを表示する

回答3-16
3-16.py
df.loc[:,["Age","Name"]]
#     Age                    Name
#0   21.0           Sato, Mr. Ren
#1   37.0     Suzuki, Mrs. Himari
#2   25.0       Tanaka, Miss. Mei
#3   34.0          Ito, Mrs. Riko
#4   34.0   Takahashi, Mr. Haruto
#5    NaN    Watanabe, Mr. Hinata
#6   53.0    Yamamoto, Mr. Itsuki
#7    1.0  Nakamura, Master. Yuto
#8   26.0     Kobayashi, Mrs. Aoi
#9   13.0          Kato, Mrs. Mio
#10   3.0    Yoshida, Miss. Yuina
#11  57.0       Yamada, Miss. Rin
#12  19.0      Sasaki, Mr. Minato
#13  38.0   Yamaguchi, Mr. Hiroto
#14  13.0   Matsumoto, Miss. Yuna
#15  54.0      Inoue, Mrs. Kotone
#16   1.0  Kimura, Master. Hiroto
#17   NaN        Hayashi, Mr. Aoi
#18  30.0         Saito, Mrs.Hina
#19   NaN   Shimizu, Mrs. Tsumugi

####3-17. df内の奇数の行だけを表示する

回答3-17
3-17.py
df.iloc[lambda x: x.index % 2 == 1]

#    PassengerId  Satisfied  Pclass     Sex                    Name   Age  SibSp  Parch     Ticket      Fare Cabin Embarked
#1             2          1       1  female     Suzuki, Mrs. Himari  37.0      1      0  PC 175991  8553.996   C85    Osaka
#3             4          1       1  female          Ito, Mrs. Riko  34.0      1      0     227606  6372.000  C123    Tokyo
#5             6          0       3    male    Watanabe, Mr. Hinata   NaN      0      0     661754  1014.996   NaN   Nagoya
#7             8          0       3    male  Nakamura, Master. Yuto   1.0      3      1     699818  2529.000   NaN      NaN
#9            10          1       2  female          Kato, Mrs. Mio  13.0      1      0     475472  3608.496   NaN    Osaka
#11           12          1       1  female       Yamada, Miss. Rin  57.0      0      0     227566  3186.000  C103      NaN
#13           14          0       3    male   Yamaguchi, Mr. Hiroto  38.0      1      5     694164  3753.000   NaN    Tokyo
#15           16          1       2  female      Inoue, Mrs. Kotone  54.0      0      0     497412  1920.000   NaN    Tokyo
#17           18          1       2    male        Hayashi, Mr. Aoi   NaN      0      0     488746  1560.000   NaN    Tokyo
#19           20          1       3  female   Shimizu, Mrs. Tsumugi   NaN      0      0       5298   867.000   NaN    Osaka

#参考にさせていただきました

カレーちゃん - YouTube
A Data Science Framework: To Achieve 99% Accuracy | Kaggle

23
26
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
23
26

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?