先日E-MapReduceのMetaServiceをご紹介致しましたが、今回引き続きMetaServiceを利用しつつ、E-MapReduceでMapReduceジョブの実行方法をご紹介させて頂きたいと思います。
- 前提
- EMR-3.16.0
- クラスタータイプは Hadoop
- ハードウェア構成(Header)はecs.sn1ne.2xlargeを1台
- ハードウェア構成(Worker)はecs.sn1ne.2xlargeを3台
- 言語はJava 1.8.0_171
- WordCountジョブの実行
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
public class EmrWordCount {
public static class TokenizerMapper
extends Mapper<Object, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(Object key, Text value, Context context
) throws IOException, InterruptedException {
StringTokenizer itr = new StringTokenizer(value.toString());
while (itr.hasMoreTokens()) {
word.set(itr.nextToken());
context.write(word, one);
}
}
}
public static class IntSumReducer
extends Reducer<Text,IntWritable,Text,IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values,
Context context
) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
String[] otherArgs = new
GenericOptionsParser(conf,args).getRemainingArgs();
if (otherArgs.length < 2) {
System.err.println("Usage: wordcount <in> [<in>...] <out>");
System.exit(2);
}
Job job = Job.getInstance(conf, "word count");
job.setJarByClass(EmrWordCount.class);
job.setMapperClass(TokenizerMapper.class);
job.setCombinerClass(IntSumReducer.class);
job.setReducerClass(IntSumReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
for (int i = 0; i < otherArgs.length - 1; ++i) {
FileInputFormat.addInputPath(job, new Path(otherArgs[i]));
}
FileOutputFormat.setOutputPath(job,
new Path(otherArgs[otherArgs.length - 1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
次は、前の手順で準備したjarファイル(mr_job-2.0.jar)及び入力データ(test.txt)をOSSにアップロードします。test.txtデータの内容は以下となります。
Alibaba Cloud offers a integrated suite of cloud products and services
that are reliable and secure to help you build cloud infrastructure,
data centers in multi regions empower your global business
ジョブのデプロイにおいては、E-MapReduceのデータプラットフォームで行いますので、作業用のMRジョブを作成しました。ジョブの出力先は入力データと同じバケットのoutputディレクトリを指定しています。
上記画面の「実行」ボタンを押すと、ジョブの実行が始まります。ジョブの実行中のログを即座で確認することができます、またエラーが発生した場合も、ランタイムログでエラーメッセージを確認できます。
ジョブの処理結果がOSSに出力されますが、今回のReducerを事前に1つにしたので、出力ログ(part-r-00000)が1つとなります。
出力ログ(part-r-00000)をローカルにダウンロードして開くと、以下の結果となり、テキストファイルの単語数をきちんと数えてくれました。
Alibaba 1
Cloud 1
a 1
and 2
are 1
build 1
business 1
centers 1
cloud 2
data 1
empower 1
global 1
help 1
in 1
infrastructure 1
integrated 1
multi 1
of 1
offers 1
products 1
regions 1
reliable 1
secure 1
services 1
suite 1
that 1
to 1
you 1
your 1
- 最後