0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

Python演習_02_OpenCV②

Last updated at Posted at 2025-04-26

はじめに

動作確認は下記環境で行っています

・OS: Windows11 Pro (64bit)
・Anaconda Navigator: 2.6.3
・Python: 3.10.16
・UI: jupyter Notebook 7.3.2
・OpenCV: 4.11.0

1. カメラの読み込みと表示

import cv2

cap = cv2.VideoCapture(0)

if not cap.isOpened():
    print("カメラを開けませんでした")
    exit()

while True:
    # フレームを読み込む
    ret, frame = cap.read()

    # 読み込み失敗時
    if not ret:
        print("フレームを取得できませんでした")
        break

    # フレームを表示
    cv2.imshow("Camera", frame)

    # 'q' キーで終了
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

# リソース解放
cap.release()
cv2.destroyAllWindows()

2. カスケード分類機を用いた人物認識

import cv2

window_name = "RESULT_IMG"
width, height = 1280, 720

cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)

if not cap.isOpened():
    print("Error opening the camera")
    exit()

cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)

    # カスケードファイルのパス
cascade_path = cv2.data.haarcascades + "haarcascade_frontalface_alt2.xml"
cascade = cv2.CascadeClassifier(cascade_path)
if cascade.empty():
    print("Cascade file read error")
    exit()

while True:
    ret, frame = cap.read()
    if not ret:
        break

    gray_img = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)
    # detectMultiScale(img,scalefactor(縮小量,大きくなるほど計算は早くなるが,検出見逃しが発生する可能性あり),minNeighbors(小さいときは誤検出が,大きいときは見逃しが多くなる),
    #                                                       flags(新しいカスケードでは利用されない),minSize(物体がとりうる最小サイズ,これよりも小さい場合は無視))
    faces = cascade.detectMultiScale(
            gray_img, scaleFactor=1.11, minNeighbors=3, flags=0,
            minSize=(100, 100), maxSize=(300, 300)
        )

    for (x, y, w, h) in faces:
            # cv2.rectangle(img,左上の頂点,右下の頂点,色,線の太さ,線を描画するアルゴリズムの種類)
            cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 255), 2, cv2.LINE_AA)

    cv2.imshow(window_name, frame)
    if cv2.waitKey(1) & 0xFF == ord('q'):
        break

cap.release()
cv2.destroyAllWindows()

3. 人物認識(応用編その1)

・録画機能の実装
・画像中に文字を追加

import cv2
import time
import numpy as np
from datetime import datetime
import os

class VariousConf:
    def getTimeNumStr(self):
    # time.time():UNIX時間(秒)
        return str(int(time.time()))
    def getDateTime(self):
        return datetime.now().strftime("%Y-%m-%d %H:%M:%S")

class VariousDisplay:
    def setTextMsg(self, img, text):
        overlay = img.copy()
        cv2.rectangle(overlay, (5, 5), (210, 35), (192, 192, 192), -1)
        alpha = 0.5
        # addWeighted:画像の合成
        # cv2.addWeighted(画像1,画像データ1の重み,画像2,画像データ2の重み,足し合わされた値に加算されるスカラー値(明るさの調整など),合成された出力画像データ)
        cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0, img)
        cv2.putText(img, text, (10, 25), cv2.FONT_HERSHEY_PLAIN, 1, (32, 32, 32), 1, cv2.LINE_AA)

    def setRecSignal(self, img):
        overlay = img.copy()
        cv2.rectangle(overlay, (5, 5), (175, 35), (0, 0, 0), -1)
        cv2.rectangle(overlay, (8, 8), (172, 32), (192, 192, 192), -1)
        alpha = 0.5
        cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0, img)
        cv2.circle(img, (20, 19), 5, (64, 64, 255), -1)
        cv2.putText(img, "REC", (40, 24), cv2.FONT_HERSHEY_PLAIN, 1, (32, 32, 32), 1, cv2.LINE_AA)

def main():
    window_name = "RESULT_IMG"
    width, height = 1280, 720

    cap = cv2.VideoCapture(0)
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)

    if not cap.isOpened():
        print("Error opening the camera")
        return

    # クラスの読み込み
    vConf = VariousConf()
    vDis = VariousDisplay()
    # グレー画像(64,64,64)の生成
    blankImg = np.full((height, width, 3), 64, dtype=np.uint8)

    # カスケード読み込み
    cascade_path = cv2.data.haarcascades + "haarcascade_frontalface_alt2.xml"
    cascade = cv2.CascadeClassifier(cascade_path)
    if not cascade.load(cascade_path):
        print("Cascade File Read Error")
        return

    # 動画を保存するフォルダの場所の指定
    filename = f"/home/../{vConf.getTimeNumStr()}.mp4"   
    fourcc = cv2.VideoWriter_fourcc(*'mp4v')  
    fps = 5
    # 録画準備
    writer = cv2.VideoWriter(filename, fourcc, fps, (width, height), True)

    timeNum = int(vConf.getTimeNumStr())

    cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)

    while True:
        ret, frame = cap.read()
        if not ret:
            break

        dstImg = frame.copy()
        grayImg = cv2.cvtColor(dstImg, cv2.COLOR_BGR2GRAY)

        faces = cascade.detectMultiScale(grayImg, scaleFactor=1.11, minNeighbors=3,
                                         minSize=(100, 100), maxSize=(300, 300))
        for (x, y, w, h) in faces:
            cv2.rectangle(dstImg, (x, y), (x + w, y + h), (0, 255, 255), 1, cv2.LINE_AA)

        progTime = int(vConf.getTimeNumStr())
        if timeNum + 5 > progTime:
            vDis.setRecSignal(dstImg)
            vDis.setTextMsg(frame, vConf.getDateTime())
            # 録画
            writer.write(frame)
            print("Write", timeNum + 5, vConf.getTimeNumStr())
        elif timeNum + 7 > progTime:
            # 
            writer.write(blankImg)

        cv2.imshow(window_name, dstImg)
        cv2.imshow(window_name, frame)
        if cv2.waitKey(1) & 0xFF == ord('q'):
            break

    cap.release()
    writer.release()
    cv2.destroyAllWindows()

if __name__ == "__main__":
    main()

4. 人物認識(応用編その2)

・画像処理を追加する

import cv2
import numpy as np

# グローバル変数
srcImg = None
dstImg = None
rstImg = None
thresh1 = 1
thresh2 = 11
processing_enabled = True  
windowResult = "ResultView"

# カスケード分類器の読み込み
cascade_path = cv2.data.haarcascades + "haarcascade_frontalface_alt2.xml"
cascade = cv2.CascadeClassifier(cascade_path)

def show(src, dst):
    global thresh1, thresh2
    gray = cv2.cvtColor(src, cv2.COLOR_BGR2GRAY)
    dst[:] = src.copy()
    zeroMask = np.zeros(gray.shape, dtype=np.uint8)

    sfThresh = (thresh2 + 100) / 100.0
    faces = cascade.detectMultiScale(gray, scaleFactor=sfThresh, minNeighbors=thresh1 + 1)

    for (x, y, w, h) in faces:
        cv2.rectangle(zeroMask, (x, y), (x + w, y + h), 255, -1, cv2.LINE_AA)

    filterImg = cv2.medianBlur(src, 31)
    dst[:] = np.where(zeroMask[:, :, np.newaxis] == 255, filterImg, dst)

    for (x, y, w, h) in faces:
        cv2.rectangle(dst, (x, y), (x + w, y + h), (0, 255, 255), 2, cv2.LINE_AA)

    person_label = " persons" if len(faces) > 1 else " person"
    label = f"{len(faces)}{person_label}  ScaleFactor:{sfThresh:.2f} MinNeighbors:{thresh1 + 1}"
    showFacesCount(dst, label)

def showFacesCount(img, text):
    overlay = img.copy()
    alpha = 0.5
    cv2.rectangle(overlay, (5, 5), (400, 30), (192, 192, 192), -1)
    cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0, img)
    cv2.putText(img, text, (30, 25), cv2.FONT_HERSHEY_PLAIN, 1, (32, 32, 32), 1, cv2.LINE_AA)

def update_thresh(param, value):
    global thresh1, thresh2
    if param == 'min':
        thresh1 = value
    elif param == 'scale':
        thresh2 = value

def main():
    global srcImg, dstImg, rstImg, processing_enabled

    cap = cv2.VideoCapture(0)
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)

    if not cap.isOpened():
        print("Error opening the camera")
        return

    cv2.namedWindow(windowResult)

    cv2.createTrackbar("MinNeighbors:", windowResult, thresh1, 19, lambda v: update_thresh('min', v))
    cv2.createTrackbar("ScaleFactor:", windowResult, thresh2, 100, lambda v: update_thresh('scale', v))

    while True:
        ret, frame = cap.read()
        if not ret:
            break

        srcImg = frame.copy()
        dstImg = frame.copy()
        rstImg = frame.copy()

        # 処理フラグに応じて処理
        if processing_enabled:
            show(dstImg, rstImg)
        else:
            rstImg = srcImg.copy()  # 処理なし

        # ウィンドウに表示
        cv2.imshow(windowResult, rstImg)  # 処理後映像 or 処理なし

        key = cv2.waitKey(1) & 0xFF
        if key == ord('q'):
            break
        elif key == ord('f'):
            processing_enabled = not processing_enabled
            print(f"Processing {'enabled' if processing_enabled else 'disabled'}")

    cap.release()
    cv2.destroyAllWindows()

if __name__ == "__main__":
    main()

5. カメラを使った画像センシング例

5.1 全長計測

import cv2
import numpy as np
import math

# グローバル変数
actual_diameter_cm = 2  # 初期値
mode = "select_rect"  # "select_rect" or "measure"

def on_trackbar(val):
    global actual_diameter_cm
    actual_diameter_cm = val if val > 0 else 1  # 0を防止

class Measure:
    def __init__(self):
        pass

    def get_base_size(self, img: np.ndarray, rect: tuple) -> float:
        x, y, w, h = rect
        gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
        gray_roi = gray[y:y + h, x:x + w]
        gray_roi = cv2.GaussianBlur(gray_roi, (11, 11), 2)
        _, gray_roi = cv2.threshold(gray_roi, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)

        circles = cv2.HoughCircles(
            gray_roi,
            cv2.HOUGH_GRADIENT,
            dp=2,
            minDist=10,
            param1=100,
            param2=50,
            minRadius=min(w, h) // 4,
            maxRadius=min(w, h)
        )

        radius = 0.0
        if circles is not None:
            circles = np.uint16(np.around(circles))
            for i in circles[0, :]:
                center = (i[0] + x, i[1] + y)
                radius = i[2]
                cv2.circle(img, center, radius, (0, 255, 255), -1, cv2.LINE_AA)

        cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)
        return radius * 2

    def get_length(self, distance: float, base_length: float) -> int:
        if base_length == 0:
            return 0
        return int((distance / base_length) * actual_diameter_cm)

mouse_event = {
    "x1": 0, "y1": 0, "x2": 0, "y2": 0,
    "drawing": False,
    "rect_set": False,
    "dragging_line": False
}

def mouse_callback(event, x, y, flags, param):
    global mouse_event, start_point, mode
    if event == cv2.EVENT_LBUTTONDOWN:
        if mode == "select_rect":
            mouse_event["x1"], mouse_event["y1"] = x, y
            mouse_event["drawing"] = True
        elif mode == "measure":
            mouse_event["x1"], mouse_event["y1"] = x, y
            start_point = (x, y)
            mouse_event["dragging_line"] = True

    elif event == cv2.EVENT_MOUSEMOVE:
        if mouse_event["drawing"] or mouse_event["dragging_line"]:
            mouse_event["x2"], mouse_event["y2"] = x, y

    elif event == cv2.EVENT_LBUTTONUP:
        mouse_event["x2"], mouse_event["y2"] = x, y
        if mouse_event["drawing"]:
            mouse_event["drawing"] = False
            mouse_event["rect_set"] = True
        elif mouse_event["dragging_line"]:
            mouse_event["dragging_line"] = False

def main():
    cap = cv2.VideoCapture(0)
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, 1280)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 720)
    if not cap.isOpened():
        print("Error opening the camera")
        return

    window_name = "RESULT_IMG"
    cv2.namedWindow(window_name)
    cv2.setMouseCallback(window_name, mouse_callback)
    cv2.createTrackbar("diameter(cm)", window_name, actual_diameter_cm, 10, on_trackbar)

    measure = Measure()
    global start_point
    start_point = None
    end_point = None
    history_base_lengths = []

    global mode

    while True:
        ret, frame = cap.read()
        if not ret:
            break

        img_draw = frame.copy()

        # モード表示
        cv2.putText(img_draw, f"Mode: {mode}", (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 255, 255), 2)

        if mode == "select_rect" and mouse_event["rect_set"]:
            x1, y1 = mouse_event["x1"], mouse_event["y1"]
            x2, y2 = mouse_event["x2"], mouse_event["y2"]
            x, y = min(x1, x2), min(y1, y2)
            w, h = abs(x1 - x2), abs(y1 - y2)
            if w > 10 and h > 10:
                rect = (x, y, w, h)
                base_length = measure.get_base_size(img_draw, rect)
                if base_length > 0:
                    history_base_lengths.append(base_length)

        if mode == "measure" and mouse_event["dragging_line"]:
            end_point = (mouse_event["x2"], mouse_event["y2"])
            center_point = ((start_point[0] + end_point[0]) // 2, (start_point[1] + end_point[1]) // 2)
            distance_px = int(math.hypot(start_point[0] - end_point[0], start_point[1] - end_point[1]))
            display_distance = distance_px
            unit = "px"

            if history_base_lengths:
                avg_base_length = sum(history_base_lengths) / len(history_base_lengths)
                display_distance = measure.get_length(distance_px, avg_base_length)
                unit = "cm"

            label = f"{display_distance} {unit}"
            cv2.line(img_draw, start_point, end_point, (0, 255, 255), 1, cv2.LINE_AA)
            cv2.putText(img_draw, label, center_point, cv2.FONT_HERSHEY_PLAIN, 1.2, (0, 255, 255), 2, cv2.LINE_AA)

        if mode == "select_rect" and mouse_event["drawing"]:
            cv2.rectangle(img_draw, (mouse_event["x1"], mouse_event["y1"]), (mouse_event["x2"], mouse_event["y2"]), (255, 0, 0), 1)

        key = cv2.waitKey(1) & 0xFF
        if key == ord('q'):
            break
        elif key == ord('c'):
            start_point = None
            end_point = None
            history_base_lengths.clear()
            mouse_event["rect_set"] = False
        elif key == ord('m'):
            mode = "measure" if mode == "select_rect" else "select_rect"
            print(f"Mode changed to: {mode}")

        cv2.imshow(window_name, img_draw)

    cap.release()
    cv2.destroyAllWindows()

if __name__ == "__main__":
    main()

5.2 往復運動の計測

import cv2
import numpy as np

class UpDownCounter:
    def __init__(self, height):
        self.height = height
        self.init()

    def init(self):
        self.minCircle = 5
        self.maxCircle = 30
        self.minPoint = self.height
        self.maxPoint = 0
        self.tempPoint = 0
        self.upCount = 0

    def get_circle(self, img, mask):
        mask_blur = cv2.blur(mask, (11, 11))
        circles = cv2.HoughCircles(mask_blur, cv2.HOUGH_GRADIENT, dp=2,
                                   minDist=img.shape[0]//4,
                                   param1=70, param2=20, minRadius=10, maxRadius=40)

        if circles is not None:
            circles = np.round(circles[0, :]).astype("int")
            for (x, y, r) in circles:
                cv2.circle(img, (x, y), r, (0, 0, 255), 2, cv2.LINE_AA)
                if len(circles) == 1 and y > 0:
                    self.minPoint = min(self.minPoint, y)
                    self.maxPoint = max(self.maxPoint, y)
                    self.tempPoint = y

    def set_msg_area(self, img):
        overlay = img.copy()
        cv2.rectangle(overlay, (5, 5), (410, 55), (64, 64, 64), -1)
        cv2.addWeighted(overlay, 0.5, img, 0.5, 0, img)

    def show_info(self, img):
        cv2.putText(img, f"Count = {self.upCount:3d}", (15, 23), cv2.FONT_HERSHEY_SIMPLEX,
                    0.4, (255, 255, 255), 1, cv2.LINE_AA)
        text = f"Position = {self.tempPoint:3d} Higher Position = {self.minPoint:3d} Lower Position = {self.maxPoint:3d}"
        cv2.putText(img, text, (15, 40), cv2.FONT_HERSHEY_SIMPLEX,
                    0.4, (255, 255, 255), 1, cv2.LINE_AA)

    def add_up_count(self):
        self.upCount += 1

    def set_min_circle(self, min_circle):
        self.minCircle = min_circle

    def get_min_point(self):
        return self.minPoint

    def get_max_point(self):
        return self.maxPoint

    def get_temp_point(self):
        return self.tempPoint


hMax, sMax, vMax = 0, 0, 0
hMin, sMin, vMin = 255, 255, 255
hsvImg = None

def mouse_callback(event, x, y, flags, userdata):
    global hMax, sMax, vMax, hMin, sMin, vMin, hsvImg
    if hsvImg is None:
        return

    if event == cv2.EVENT_MOUSEMOVE and flags == cv2.EVENT_FLAG_LBUTTON:
        H, S, V = hsvImg[y, x]
        hMax = max(hMax, H)
        sMax = max(sMax, S)
        vMax = max(vMax, V)
        hMin = min(hMin, H)
        sMin = min(sMin, S)
        vMin = min(vMin, V)

    elif event == cv2.EVENT_RBUTTONDOWN:
        hMax, sMax, vMax = 0, 0, 0
        hMin, sMin, vMin = 255, 255, 255
        userdata.init()

def main():
    global hsvImg
    width, height = 1280, 720
    foreImg = None
    maskImg = None
    backImg = np.full((height, width, 3), (0, 255, 255), dtype=np.uint8)

    cap = cv2.VideoCapture(0)
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)

    if not cap.isOpened():
        print("Error opening the camera")
        return

    udc = UpDownCounter(height)
    countFlg = False

    windowName = "COMPOSITE"
    cv2.namedWindow(windowName, cv2.WINDOW_AUTOSIZE | cv2.WINDOW_KEEPRATIO)
    cv2.setMouseCallback(windowName, mouse_callback, udc)

    while True:
        lower = np.array([hMin, sMin, vMin])
        upper = np.array([hMax, sMax, vMax])

        ret, foreImg = cap.read()
        if not ret:
            break

        hsvImg = cv2.cvtColor(foreImg, cv2.COLOR_BGR2HSV)
        maskImg = cv2.inRange(hsvImg, lower, upper)

        if maskImg.shape[0] == height:
            foreImg = cv2.bitwise_or(foreImg, backImg, mask=maskImg)

        udc.set_msg_area(foreImg)
        udc.get_circle(foreImg, maskImg)

        minToMaxDis = udc.get_max_point() - udc.get_min_point()
        if minToMaxDis > foreImg.shape[0] // 10:
            borderPoint = udc.get_max_point() - minToMaxDis // 2
            if borderPoint < udc.get_temp_point() and not countFlg:
                udc.add_up_count()
                countFlg = True
            elif borderPoint > udc.get_temp_point():
                countFlg = False

        udc.show_info(foreImg)
        cv2.imshow(windowName, foreImg)
        if cv2.waitKey(1) >= 0:
            break

    cap.release()
    cv2.destroyAllWindows()

if __name__ == "__main__":
    main()

5.3 侵入者の検知

・背景差分の検出(createBackgroundSubtractorMOG2)を行う
・変化の割合が大きければ録画開始、5秒間録画したあと2秒間真っ暗な映像を付け足す
・スライダー(createTrackbar)で感度変更可

import cv2
import numpy as np
from datetime import datetime
import time
import os

class VariousConf:
    def __init__(self):
        pass

    def getTimeNumStr(self):
        return str(int(time.time()))

    def getDateTime(self):
        now = datetime.now()
        return now.strftime("%Y-%m-%d %H:%M:%S")

class Backgroundsub:
    def __init__(self):
        self.bg_sub = cv2.createBackgroundSubtractorMOG2()

    def createDiff(self, img, mask_img):
        bg_img = np.full_like(img, (255, 0, 250))
        mask = self.bg_sub.apply(img, learningRate=-1) #背景と異なる部分は白, 変化のない部分は黒の画像をかえす
        mask = cv2.medianBlur(mask, 11)
        _, mask = cv2.threshold(mask, 0, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
        output_img = cv2.bitwise_and(bg_img, img, mask=mask)
        img[:] = np.where(mask[:, :, np.newaxis] == 255, output_img, img) #maskが白のピクセルはoutput_img, それ以外は元のimg
        mask_img[:] = mask

    def doWatchChange(self, mask_img, threshold):
        white = np.count_nonzero(mask_img)
        black = mask_img.size - white
        if black == 0:
            return False
        ratio = (white / black) * 100
        return 0 < ratio < 100 and ratio > threshold

    def setTextMsg(self, img, text):
        overlay = img.copy()
        alpha = 0.5
        cv2.rectangle(overlay, (5, 5), (205, 35), (192, 192, 192), -1)
        cv2.addWeighted(overlay, alpha, img, 1 - alpha, 0, img)
        cv2.putText(img, text, (10, 25), cv2.FONT_HERSHEY_PLAIN, 1, (32, 32, 32), 1, cv2.LINE_AA)


def main():
    window_name = "RESULT_IMG"
    width, height = 1280, 720
    blank_img = np.full((height, width, 3), 64, dtype=np.uint8)

    cap = cv2.VideoCapture(0)
    cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
    cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
    if not cap.isOpened():
        print("Error opening the camera")
        return

    vconf = VariousConf()
    os.makedirs("../../VIDEOS", exist_ok=True)
    file_name = f"../../VIDEOS/{vconf.getTimeNumStr()}.avi"
    fourcc = cv2.VideoWriter_fourcc(*'MJPG')
    writer = cv2.VideoWriter(file_name, fourcc, 5, (width, height))

    bgsub = Backgroundsub()
    cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
    cv2.moveWindow(window_name, 0, -28)

    th = 10  # 初期しきい値
    time_num = int(vconf.getTimeNumStr())

    def on_trackbar(val):
        nonlocal th
        th = val
    cv2.createTrackbar("Thresholds:", window_name, th, 100, on_trackbar)

    while True:
        ret, src_img = cap.read()
        if not ret:
            break
        dst_img = src_img.copy()
        mask_img = np.zeros((height, width), dtype=np.uint8)

        bgsub.createDiff(dst_img, mask_img)
        bgsub.setTextMsg(src_img, vconf.getDateTime())

        if bgsub.doWatchChange(mask_img, th):
            time_num = int(vconf.getTimeNumStr())
            writer.write(src_img)

        prog_time = int(vconf.getTimeNumStr())
        if time_num + 5 > prog_time:
            writer.write(src_img)
            print("Write", time_num + 5, vconf.getTimeNumStr())
        elif time_num + 7 > prog_time:
            writer.write(blank_img)

        cv2.imshow(window_name, dst_img)
        if cv2.waitKey(1) >= 0:
            break

    writer.release()
    cap.release()
    cv2.destroyAllWindows()

if __name__ == "__main__":
    main()

6. 演習課題

演習①

上記プログラムをそれぞれ自分のPCで動作させて下さい.

少なくとも「4」までは確実に行ってください

演習② 2.カスケード分類機を用いた人物認識において

パラメータ
・scalefactor
・minNeighbors
・minSize
・カメラ解像度(例:640x480などへ)
を変更して挙動が変わるか実験をして確かめて下さい

演習③ 3.人物認識(応用編その1)において

動画保存場所をきちんと指定して保存された動画を確認して下さい

課題④ 5.3の画像で差分が紫色で表示されますがこの色を変えてみて下さい

課題①検出を安定させよう(1個検出)

まずは検出するものは1個だけという条件下で、フレームごとに検出したりしなかったりチカチカする状態を
改善(安定)させて下さい.
【ヒント】
・一定回数以上連続検出したらはじめて「検出」判定する
・検出できないフレームが続いたら「対象が消えた」と判定する

もとにするプログラムはどれでもよいです(5.1~5.3以外)

課題②検出を安定させよう(複数検出)

課題①について、複数物体の検出でも対応可能に改善しよう

0
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?