1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

【Systematic Trading】 Risk Parity Weight

Last updated at Posted at 2019-10-13

Risk Parity

  • リングオンリーのRisk Parity(Equal Risk Contribution)ポートフォリオのウェイトを算出
  • 過去リターンを用いて推定リスクを算出

# 合計ウェイト=1
def weight_sum_constraint(x):
    return x.sum() - 1.0

# ロングオンリー
def weight_longonly(x):
    return x

# リスク寄与
def rc(weight, covmat):
    weight = np.array(weight)
    variance = weight.T @ covmat @ weight
    sigma = variance ** 0.5
    mrc = 1 / sigma * (covmat @ weight)

    rc_ = weight * mrc
    rc_out = rc_ / rc_.sum()
    return rc_out

# 目的関数(各構成要素のリスク寄与が同じ)
def riskparity_objective(x):
    variance = x.T @ covmat @ x
    sigma = variance ** 0.5
    mrc = 1 / sigma * (covmat @ x)
    rc = x * mrc
    a = np.reshape(rc, (len(rc), 1))
    risk_diffs = a - a.T
    sum_risk_diffs_squared = np.sum(np.square(np.ravel(risk_diffs)))
    return sum_risk_diffs_squared


def riskparity(covmat):
    x0 = np.diag(covmat)

    constraints = ({'type': 'eq', 'fun': weight_sum_constraint},
                   {'type': 'ineq', 'fun': weight_longonly})
    options = {'ftol': 1e-20, 'maxiter': 800}
    result = minimize(fun=riskparity_objective,
                      x0=x0,
                      method='SLSQP',
                      constraints=constraints,
                      options=options)
    # print(result.success)
    return result.x

ウェイト計算例

  • インプットデータ
  • df_ret:リターンデータ(dataframe)
  • ポートフォリオ構築に求めるリターン日数:252日
  • 時点:2018/12/31
lookback = 252
d = '2018/12/31'
result_weight = {}

ret0 = df_ret[:d][-1 * lookback:]

# 共分散行列
covmat = ret0.cov()

# ウェイトを算出
result_weight[d] = riskparity(covmat)

# dictionary→dataframeにし、列名を整理
DF_weight_port = pd.DataFrame.from_dict(result_weight).transpose()
DF_weight_port.columns = df_ret_set.columns
  • インプットが共分散行列なので、ヒストリカルリターンからのdf.cov()以外に、Shrinkageなど、工夫を凝らした共分散行列を用いる場合でも、上記プログラムに変更の必要はないはず
  • 60/40やその他ポートフォリオ構築方法との比較の実証分析を今後アップ予定。。。
1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?