6
8

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Time Series Decomposition

Last updated at Posted at 2019-11-27

月次リターンのカレンダー効果を検証

statsmodelsのdecomposeを用いて、ハロウィーン効果、Sell in Mayなど巷で言われるカレンダー効果が見られるか実験


import numpy as np
import pandas as pd

import statsmodels.api as sm
import pandas_datareader.data as web

import warnings
warnings.filterwarnings('ignore')

import matplotlib.pyplot as plt
plt.style.use('seaborn-darkgrid')
plt.rcParams['axes.xmargin'] = 0.01
plt.rcParams['axes.ymargin'] = 0.01

window = 250*3

'''S&P500データ取得 '''
data1 = web.DataReader("^GSPC", "yahoo", "1980/1/1").dropna()

# Treasury Yield 10 Yearsデータ取得
data2 = web.DataReader("^TNX", "yahoo", "1980/1/1").dropna()

# 日々年率Volatility = 10%にレバレッジ調整した設定
ret = pd.DataFrame(data1['Adj Close'] / data1['Adj Close'].shift(1) - 1)
ret = 0.1 * ret / (ret.rolling(252).std()*np.sqrt(252)).shift(1)
data1 = 100*((1 + ret).cumprod()).dropna(axis=0)

data1_freq = data1.resample('M').last().fillna(method='ffill')
data1_freq['ret1'] = data1_freq['Adj Close']/data1_freq['Adj Close'].shift(1) - 1

# 月次ターンを再作成
data1_freq_equity_curve = 100*((1 + data1_freq['ret1']).cumprod()).dropna(axis=0)
data1_freq_equity_curve.index = pd.to_datetime(data1_freq_equity_curve.index)

# 通期、10年(120ヵ月)、5年(60ヵ月)
res_all = sm.tsa.seasonal_decompose(data1_freq_equity_curve, freq=12)
res_10Y = sm.tsa.seasonal_decompose(data1_freq_equity_curve[-120:], freq=12)
res_5Y = sm.tsa.seasonal_decompose(data1_freq_equity_curve[-60:], freq=12)

seasonality = pd.concat([res_all.seasonal, 
                         res_10Y.seasonal, 
                         res_5Y.seasonal], axis=1)

seasonality.columns = ['1981-', '10Y', '5Y']
m_seasonality = seasonality.groupby(seasonality.index.month).mean()

# Creat Figure
month = m_seasonality.index
height = m_seasonality * 100

bar_width = 0.3

plt.figure(figsize=(10, 4), dpi=80)
plt.bar(month, height['1981-'], tick_label=month, 
        width=0.3, label='1981-')
plt.bar(month + bar_width, height['10Y'], tick_label=month, 
        width=0.3, label='10Y')
plt.bar(month + 2*bar_width, height['5Y'], tick_label=month, 
        width=0.3, label='5Y')
plt.xticks(month + bar_width, month)
plt.legend()
plt.title("Average Return by Month")
plt.xlabel("Month")
plt.ylabel("Ave.Ret(%)")
plt.show()

seasonalにリターンを見ると

  • Sell in Mayは近年言えてそう
  • 年末売り/年初買い?

M_ret.png

Decomposition(Trend, Seasonality, Residual)

res_10Y.plot()
plt.show()

Decomp.png

  • 短期的な平均回帰や、マーケット動向を把握するのに使用
  • 過去のマーケット環境(Volatility水準の差etc.)の調整が工夫入りそう
6
8
2

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
6
8

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?