0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

PRML 演習問題2.41 解答

Last updated at Posted at 2020-06-06

問題

 ガンマ分布が正規化されていることを示せ。

解答

(2.146)を積分する。
$\lambda$ = $1/\sigma^2$なので、積分範囲は $\lambda$ $>0$である。

$\int_{0}^{\infty} \operatorname{Gam}(\lambda | a, b)=\int_{0}^{\infty} \frac{1}{\Gamma(a)} b^{a} \lambda^{a-1} \exp (-b \lambda) d \lambda$

$=\frac{1}{\Gamma(a)} \int_{0}^{\infty} b^{a} \lambda^{a-1} \exp (-b \lambda) d \lambda$

($b \lambda=u$ とおくと、$b d \lambda=d u$ より、)

$=\frac{1}{\Gamma(a)} \int_{0}^{\infty} b^{a}\left(\frac{u}{b}\right)^{a-1} \exp (-u) b^{-1} d u$

$=\frac{1}{\Gamma(a)} \int_{0}^{\infty} b^{a} b^{-1} b^{1-a} u^{a-1} \exp (-u) d u$

$=\frac{1}{\Gamma(a)} \int_{0}^{\infty}u^{a-1} \exp (-u) d u$

$=\Gamma(a)\frac{1}{\Gamma(a)}$

$=1$

よって、題意は証明された。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?