0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

AtCoder B,C問題をKotlinで解こう - ABC270

Last updated at Posted at 2024-02-05

当記事ではAtCoder、ABCのB問題ならびにC問題(時々D問題も)のKotlinでの解法を超初心者向けに詳細に解説します。

同記事をZennにも投稿しています。

B - Hammer

やりたいこと

スタート、ゴール、壁、ハンマーの位置関係で場合分けを行い、スタートからゴールまでの最短移動距離を求めよう。ゴールに到達できない場合は-1を出力しよう。

位置関係の場合わけは以下の3パターンとなる。

  1. スタートとゴールの間に壁がある場合
    1. スタートとハンマーの間に壁がある場合
      ゴールに到達できない
    2. スタートとハンマーの間に壁がない場合
      スタートからハンマーまで移動し、ハンマーからゴールに移動する
  2. スタートとゴールの間に壁がない場合
    スタートからゴールに移動する。

入力値の取得

    // 入力値の取得
    val (x, y, z) = readln().split(" ").map { it.toInt() }

サンプルコード

main.kt
fun main(args: Array<String>) {
    println(getAns())
}

fun getAns(): Int {
    // 入力値の取得
    val (x, y, z) = readln().split(" ").map { it.toInt() }

    // スタート、ゴール、壁、ハンマーの位置関係で場合分けをする
    return if (y in 0..x || y in x..0) {
        // スタートからゴールまでの間に壁がある
        if (y in 0..z || y in z..0) {
            // スタートからハンマーまでの間に壁がある
            // この場合ゴール不可能
            -1
        } else {
            // スタートからハンマーまでの間に壁はない
            // ハンマーを拾ってからゴールを目指す
            Math.abs(z) + Math.abs(x - z)
        }
    } else {
        // スタートからゴールまでの間に壁はないのでそのままゴールできる
        Math.abs(x)
    }
}

C - Simple path

やりたいこと

  • x から y への最短経路を求める。
    • 最短距離を求め、経路の復元を行う。

幅優先探索 を行い、x から 各頂点への最短距離を求める。各頂点への最短距離を求める際に、どこの頂点から来たのか を保持して、経路の復元を行えるようにする。

入力値の取得

    // 入力値の取得
    val (n,x,y) = readln().split(" ").map { it.toInt() }
    // 頂点同士の繋がりを取得
    val connect = Array(n+1) { mutableSetOf<Int>() }
    repeat(n-1) {
        val (a,b) = readln().split(" ").map { it.toInt() }
        connect[a].add(b)
        connect[b].add(a)
    }

サンプルコード

main.kt
import java.util.LinkedList

fun main(args: Array<String>) {
    // 入力値の取得
    val (n, x, y) = readln().split(" ").map { it.toInt() }
    // 頂点同士の繋がりを取得
    val connect = Array(n + 1) { mutableSetOf<Int>() }
    repeat(n - 1) {
        val (a, b) = readln().split(" ").map { it.toInt() }
        connect[a].add(b)
        connect[b].add(a)
    }

    // x からの距離を保持
    val step = IntArray(n + 1) { Int.MAX_VALUE }
    // どこの頂点から移動してきたのかを保持
    val from = IntArray(n + 1)

    // x -> y へ移動する場合の最短距離とその経路を求める
    val queue = LinkedList<Int>()
    queue.add(x)
    step[x] = 0
    
    // 幅優先探索を行う
    while (queue.isNotEmpty()) {
        val cur = queue.pop()
        if (cur == y) {
            // y はゴールなので、それ以上は処理しなくていい
            break
        }
        for (i in connect[cur]) {
            if (step[i] <= step[cur] + 1) {
                continue
            }
            step[i] = step[cur] + 1
            from[i] = cur
            queue.add(i)
        }
    }

    // y から移動元を辿って経路を復元
    val route = mutableListOf(y)
    while (route.last() != x) {
        route.add(from[route.last()])
    }
    println(route.reversed().joinToString(" "))
}
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?