1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

Newton法(非線形方程式の数値解法)

Last updated at Posted at 2018-10-11

Newton法とは

  • 非線形方程式の数値解法の一つ
  • 初期値$x_n$におけるグラフ$f(x)$の接線が$x$軸と交わる点を$x_{n+1}$として解$\alpha$の近似値を求める。

qiita-num-2.png

算法

初期値

$x_0$ : 適当な方法で決める

反復手順

$x_{n+1}=x_n-f(x)/f^{\prime}(x)$

停止則

  • 更新量が小さい:$|f(x)/f^{\prime}(x)|<\varepsilon_1$
  • $f(x_n)$が$0$に近い:$|f(x_n)|<\varepsilon_2$

サンプルコード

$f(x)=x^2-1$ 、初期値 $x_0=3$ としてNewton法を使って解を求めるプログラム。
$f^{\prime}(x)\neq 0$ の確認とかを入れてないガバガバコード

newton_method.c
#include<stdio.h>
#include<math.h>

double f (double x) {
  return x*x-1;
}

double df (double x) {
  return 2*x;
}

double newton_method (double x) {
  double new_x;
  while (1) {
    new_x = x - f(x)/df(x);
    if (fabs(f(x)/df(x)) < 1e-10) break;
    if (fabs(f(new_x)) < 1e-10) break;
    x = new_x;
  }
  return new_x;
}

int main (void) {
  double alpha;
  alpha = newton_method(3);
  printf("%f\n", alpha);
  return 0;
}

特徴

  • 初期値によって、反復回数が結構変わる。
1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?