Help us understand the problem. What is going on with this article?

シンプソン則(数値積分)

More than 1 year has passed since last update.

シンプソン則とは

  • 数値積分の解法の一つ
  • 関数$f(x)$において、微小区間の関数値を二次方程式で近似
  • 微小区間$[x_0,x_2]$の端点とその中点$x_1$を用いて、二次方程式を求める

qiita-integer-4.png

算法

三点の$y$座標をそれぞれ$f(x_0)=y_0,f(x_1)=y_1,f(x_2)=y_2$とする。
近似に用いる二次方程式$y=ax^2+bx+c$は、$(x_0,y_0),(x_1,y_1),(x_2,y_2)$を通る、また、$x_2-x_1=h,x_1-x_0=h$とすると、
$$ a=\frac{y_0-2y_1+y_2}{2h^2}$$$$b=\frac{-(x_1+x_2)y_0+2(x_2+x_0)y_1-(x_0+x_1)y_2}{2h^2}$$$$c=\frac{x_1x_2y_0-2x_2x_0y_1+x_0x_1y_2}{2h^2} $$
この二次方程式$y=ax^2+bx+c$を$x_0$から$x_2$まで積分すると、
$$ \int_{x_0}^{x_2}(ax^2+bx+c)dx=\frac{a}{3}(x_2^3-x_0^3)+\frac{b}{2}(x_2^2-x_0^2)+c(x_2-x_0) $$$$=\frac{h}{3}(y_0+4y_1+y_2)$$

区間$[a,b]$が微小距離$h$で$2n$等分されているとし、各$x_i\ (i=0,1,\cdots,2n)$の$y$座標を$f(x_i)=y_i$とすると、区間$[a,b]$内の積分は次のようになる。
$$\int_a^bf(x)dx=\frac{h}{3}{(y_0+4y_1+y_2)+(y_2+4y_3+y_4)+\cdots+(y_{2n-2}+4y_{2n-1}+y_{2n})}$$$$=\frac{h}{3}(y_0+4y_1+2y_2+4y_3+2y_4+\cdots+2y_{2n-2}+4y_{2n-1}+y_{2n})$$
ただし、$h=(b-a)/(2n)$

サンプルコード

$f(x)=\sqrt{1-x^2}$において、区間$[0,1]$の定積分の値を求めるプログラム。
分割数は4。
解析解は$\pi/4$です。

simpsons_rule.c
#include<stdio.h>
#include<math.h>

double f (double x) {
  return sqrt(1-x*x);
}

/* シンプソン則(区間[a,b]をn分割) */
double simpsons_rule (double a, double b, int n) {
  double h;
  int i;
  double value=0;

  h = (b - a) / (2*n);
  for (i = 0; i <= 2*n; i++) {
    if (i == 0 || i == 2*n) value += f(a + i*h);   // 0か2nのとき
    else if (i % 2 == 1) value += 4 * f(a + i*h);   // 奇数
    else value += 2 * f(a + i*h);   // 偶数
  }
  value = value*h/3;
  return value;
}

int main (void) {
  printf("Analytical solution: %f\n", M_PI/4);
  printf("Numerical solution : %f\n", simpsons_rule(0, 1, 4));
  return 0;
}

実行結果

Analytical solution: 0.785398
Numerical solution : 0.780297

特徴

  • 一区間の誤差評価:$O(h^5/90)$
  • 全区間合計の誤差評価:$O(h^4)$
Why not register and get more from Qiita?
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
Comments
No comments
Sign up for free and join this conversation.
If you already have a Qiita account
Why do not you register as a user and use Qiita more conveniently?
You need to log in to use this function. Qiita can be used more conveniently after logging in.
You seem to be reading articles frequently this month. Qiita can be used more conveniently after logging in.
  1. We will deliver articles that match you
    By following users and tags, you can catch up information on technical fields that you are interested in as a whole
  2. you can read useful information later efficiently
    By "stocking" the articles you like, you can search right away
ユーザーは見つかりませんでした