概要
chainerの作法を調べてみた。
kaggleのcat&dogやってみた。
結果
サンプルコード
import glob
import chainer
import chainer.functions as F
import chainer.links as L
from chainer import training, datasets, iterators, Chain, optimizers, serializers
from chainer.training import extensions
from PIL import Image
import numpy as np
class MLP(Chain):
def __init__(self, n_units, n_out):
super(MLP, self).__init__(l1 = L.Linear(None, n_units), l2 = L.Linear(None, n_units), l3 = L.Linear(None, n_out))
def __call__(self, x):
h1 = F.relu(self.l1(x))
h2 = F.relu(self.l2(h1))
return self.l3(h2)
def main():
cats = glob.glob('../cats/dogs/cat*')
dogs = glob.glob('../cats/dogs/dog*')
data = []
for i in cats:
data.append((i, 0))
for i in dogs:
data.append((i, 1))
dataset = datasets.LabeledImageDataset(data)
def transform(inputs):
img, label = inputs
img = img[ : 3, ...]
img = img.astype(np.uint8)
img = Image.fromarray(img.transpose(1, 2, 0))
img = img.resize((28, 28), Image.BICUBIC)
img = img.convert('L')
img = np.array(img, dtype = np.float32).reshape(1, -1) / 255
return img, label
dataset = datasets.TransformDataset(dataset, transform)
train_iter = iterators.SerialIterator(dataset, 100)
test_iter = iterators.SerialIterator(dataset, 100, repeat = False, shuffle = False)
model = L.Classifier(MLP(1000, 10))
optimizer = optimizers.Adam()
optimizer.setup(model)
updater = training.StandardUpdater(train_iter, optimizer, device = -1)
trainer = training.Trainer(updater, (5, 'epoch'), out = 'result')
trainer.extend(extensions.Evaluator(test_iter, model, device = -1))
trainer.extend(extensions.LogReport())
trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'main/accuracy', 'elapsed_time']))
trainer.run()
serializers.save_npz('cats.model', model)
if __name__ == '__main__':
main()
以上。