0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

chainerの作法 その10

Posted at

概要

chainerの作法を調べてみた。
kaggleのcat&dogやってみた。

結果

image.png

サンプルコード

import glob
import chainer
import chainer.functions as F
import chainer.links as L
from chainer import training, datasets, iterators, Chain, optimizers, serializers
from chainer.training import extensions
from PIL import Image
import numpy as np


class MLP(Chain):
	def __init__(self, n_units, n_out):
		super(MLP, self).__init__(l1 = L.Linear(None, n_units), l2 = L.Linear(None, n_units), l3 = L.Linear(None, n_out))
	def __call__(self, x):
		h1 = F.relu(self.l1(x))
		h2 = F.relu(self.l2(h1))
		return self.l3(h2)

def main():
	cats = glob.glob('../cats/dogs/cat*')
	dogs = glob.glob('../cats/dogs/dog*')
	data = []
	for i in cats:
		data.append((i, 0))
	for i in dogs:
		data.append((i, 1))
	dataset = datasets.LabeledImageDataset(data)
	def transform(inputs):
		img, label = inputs
		img = img[ : 3, ...]
		img = img.astype(np.uint8)
		img = Image.fromarray(img.transpose(1, 2, 0))
		img = img.resize((28, 28), Image.BICUBIC)
		img = img.convert('L')
		img = np.array(img, dtype = np.float32).reshape(1, -1) / 255
		return img, label
	dataset = datasets.TransformDataset(dataset, transform)
	train_iter = iterators.SerialIterator(dataset, 100)
	test_iter = iterators.SerialIterator(dataset, 100, repeat = False, shuffle = False)
	model = L.Classifier(MLP(1000, 10))
	optimizer = optimizers.Adam()
	optimizer.setup(model)
	updater = training.StandardUpdater(train_iter, optimizer, device = -1)
	trainer = training.Trainer(updater, (5, 'epoch'), out = 'result')
	trainer.extend(extensions.Evaluator(test_iter, model, device = -1))
	trainer.extend(extensions.LogReport())
	trainer.extend(extensions.PrintReport(['epoch', 'main/loss', 'main/accuracy', 'elapsed_time']))
	trainer.run()
	serializers.save_npz('cats.model', model)

if __name__ == '__main__':
	main()



以上。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?