0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

kerasを使わないでsinを回帰

Posted at

概要

kerasを使わないでsinを回帰

写真

sin11.png

サンプルコード

import numpy as np
import matplotlib.pyplot as plt

def tanh(x):
	return np.tanh(x)

def dtanh(x):
	return 1.0 - x ** 2

class TLP:
	def __init__(self, Input, Hidden, Output):
		self.Input = Input + 1
		self.Hidden = Hidden + 1
		self.Output = Output
		self.W1 = np.random.uniform(-1.0, 1.0, (self.Hidden, self.Input))
		self.W2 = np.random.uniform(-1.0, 1.0, (self.Output, self.Hidden))
	def fit(self, X, t, learning_rate = 0.1, epochs = 10000):
		X = np.hstack([np.ones([X.shape[0], 1]), X])
		t = np.array(t)
		for k in range(epochs):
			i = np.random.randint(X.shape[0])
			x = X[i]
			z = tanh(np.dot(self.W1, x))
			y = tanh(np.dot(self.W2, z))
			bias2 = y - t[i]
			if k % 1000 == 0:
				print (k, bias2)
			bias1 = dtanh(z) * np.dot(self.W2.T, bias2)
			x = np.atleast_2d(x)
			bias1 = np.atleast_2d(bias1)
			self.W1 -= learning_rate * np.dot(bias1.T, x)
			z = np.atleast_2d(z)
			bias2 = np.atleast_2d(bias2)
			self.W2 -= learning_rate * np.dot(bias2.T, z)
	def predict(self, x):
		x = np.array(x)
		x = np.insert(x, 0, 1)
		z = tanh(np.dot(self.W1, x))
		y = tanh(np.dot(self.W2, z))
		return y

if __name__ == "__main__":
	X = np.arange(-3, 3, 0.1)
	X = np.reshape(X, (60, 1))
	y = np.sin(X)
	tlp = TLP(1, 8, 1)
	tlp.fit(X, y, learning_rate = 0.1, epochs = 12001)
	data = np.arange(-3, 3, 0.1)
	p = []
	for x in data:
		pred = tlp.predict(x)
		p.append(pred)
	plt.plot(data, y, 'b', data, p, 'r--')
	plt.savefig("sin11.png")
	plt.show()


以上。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?