0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

manimの作法 その22

Posted at

#概要

manimの作法、調べてみた。
ZetaTransformationScene使ってみた。

#サンプルコード

from manimlib.imports import *
#import mpmath

#mpmath.mp.dps = 7
def zeta(z):
	max_norm = FRAME_X_RADIUS
	try:
		return np.complex(mpmath.zeta(z))
	except:
		return np.complex(max_norm, 0)
def d_zeta(z):
	epsilon = 0.01
	return (zeta(z + epsilon) - zeta(z))/epsilon

class ZetaTransformationScene(ComplexTransformationScene):
	CONFIG = {
		"anchor_density" : 35,
		"min_added_anchors" : 10,
		"max_added_anchors" : 300,
		"num_anchors_to_add_per_line" : 75,
		"post_transformation_stroke_width" : 2,
		"default_apply_complex_function_kwargs" : {
			"run_time" : 5,
		},
		"x_min" : 1,
		"x_max" : int(FRAME_X_RADIUS+2),
		"y_min" : 1,
		"y_max" : int(FRAME_X_RADIUS+2),
		"extra_lines_x_min" : -2,
		"extra_lines_x_max" : 4,
		"extra_lines_y_min" : -2,
		"extra_lines_y_max" : 2,
	}
	def prepare_for_transformation(self, mob):
		for line in mob.family_members_with_points():
			if not isinstance(line, Line):
				line.insert_n_curves(self.min_added_anchors)
				continue
			p1 = line.get_start()+LEFT
			p2 = line.get_end()+LEFT
			t = (-np.dot(p1, p2-p1))/(get_norm(p2-p1)**2)
			closest_to_one = interpolate(line.get_start(), line.get_end(), t)
			diameter = abs(zeta(complex(*closest_to_one[:2])))
			target_num_curves = np.clip(int(self.anchor_density*np.pi*diameter),self.min_added_anchors,self.max_added_anchors,)
			num_curves = line.get_num_curves()
			if num_curves < target_num_curves:
				line.insert_n_curves(target_num_curves-num_curves)
			line.make_smooth()
	def add_extra_plane_lines_for_zeta(self, animate = False, **kwargs):
		dense_grid = self.get_dense_grid(**kwargs)
		if animate:
			self.play(ShowCreation(dense_grid))
		self.plane.add(dense_grid)
		self.add(self.plane)
	def get_dense_grid(self, step_size = 1./16):
		epsilon = 0.1
		x_range = np.arange(max(self.x_min, self.extra_lines_x_min),min(self.x_max, self.extra_lines_x_max),step_size)
		y_range = np.arange(max(self.y_min, self.extra_lines_y_min),min(self.y_max, self.extra_lines_y_max),step_size)
		vert_lines = VGroup(*[Line(self.y_min*UP,self.y_max*UP,).shift(x*RIGHT) for x in x_range if abs(x-1) > epsilon])
		vert_lines.set_color_by_gradient(self.vert_start_color, self.vert_end_color)
		horiz_lines = VGroup(*[Line(self.x_min*RIGHT,self.x_max*RIGHT,).shift(y*UP) for y in y_range if abs(y) > epsilon])
		horiz_lines.set_color_by_gradient(self.horiz_start_color, self.horiz_end_color)
		dense_grid = VGroup(horiz_lines, vert_lines)
		dense_grid.set_stroke(width = 1)
		return dense_grid
	def add_reflected_plane(self, animate = False):
		reflected_plane = self.get_reflected_plane()
		if animate:
			self.play(ShowCreation(reflected_plane, run_time = 5))
		self.plane.add(reflected_plane)
		self.add(self.plane)
	def get_reflected_plane(self):
		reflected_plane = self.plane.copy()
		reflected_plane.rotate(np.pi, UP, about_point = RIGHT)
		for mob in reflected_plane.family_members_with_points():
			mob.set_color(Color(rgb = 1-0.5*color_to_rgb(mob.get_color())))
		self.prepare_for_transformation(reflected_plane)
		reflected_plane.submobjects = list(reversed(reflected_plane.family_members_with_points()))
		return reflected_plane
	def apply_zeta_function(self, **kwargs):
		transform_kwargs = dict(self.default_apply_complex_function_kwargs)
		transform_kwargs.update(kwargs)
		self.apply_complex_function(zeta, **kwargs)

class test(ZetaTransformationScene):
	CONFIG = {
		"anchor_density" : 15,
	}
	def construct(self):
		self.add_transformable_plane()
		self.add_extra_plane_lines_for_zeta()
		self.prepare_for_transformation(self.plane)
		print(sum([mob.get_num_points() for mob in self.plane.family_members_with_points()]))
		print(len(self.plane.family_members_with_points()))
		#self.apply_zeta_function()
		self.wait()





#生成した動画

以上。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?