0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

wemosでeigen その2

Posted at

概要

wemosでeigenやってみた。
ニューラルネットワークでxor学習してみた。

結果

image

参考にしたページ

サンプルコード

# include <vector>
# include <Eigen.h>
# include <Eigen/LU>
# include <Eigen/Dense>
# include <math.h>

using namespace Eigen;
void print_m(const Eigen::MatrixXd &X)
{
	int i,
		j,
		nrow,
		ncol;
	nrow = X.rows();
	ncol = X.cols();
	Serial.print("nrow: ");
	Serial.println(nrow);
	Serial.print("ncol: ");
	Serial.println(ncol);
	for (i = 0; i < nrow; i++)
	{
		for (j = 0; j < ncol; j++)
		{
			Serial.print(X(i, j), 6);
			Serial.print(", ");
		}
		Serial.println();
	}
}
/*
auto lambda_act = [](const double x) { 
	return 1.7159 * tanh(0.6667 * x); 
};
auto lambda_act_p = [](const double x) { 
	return 1.7159 * 0.6667 * (1.0 - 1.0 / (1.7159 * 1.7159) * x * x); 
};

auto lambda_act = [](const double x) { 
	return tanh(x); 
};
auto lambda_act_p = [](const double x) { 
	return 1.0 - x * x; 
};
*/
auto lambda_act = [](const double x) { 
	return 1.0 / (1 + exp(-x)); 
};
auto lambda_act_p = [](const double x) { 
	return x * (1.0 - x); 
};
const int kNumInput = 2;
const int kNumHidden = 8;
const int kNumOutput = 1;
const double kEta = 0.3;
void Softmax(VectorXd &in)
{
	VectorXd vec_exp = in.array().exp();
	const double sum_exp = vec_exp.sum();
	in = vec_exp.array() / sum_exp;
}
void learn(const VectorXd &in, const VectorXd &tk, MatrixXd &w0, MatrixXd &w1)
{
	VectorXd xi(1 + kNumInput);
	xi(0) = 1.0;
	xi.tail(kNumInput) = in;
	VectorXd aj = w0 * xi;
	VectorXd zj(1 + kNumHidden);
	zj(0) = 1.0;
	zj.tail(kNumHidden) = aj.unaryExpr(lambda_act);
	VectorXd yk = w1 * zj;
	//Softmax(yk);
	VectorXd delta_k = yk - tk;
	VectorXd delta_j = w1.transpose() * delta_k;
	delta_j = delta_j.array() * zj.unaryExpr(lambda_act_p).array();
	w1.array() -= kEta * (delta_k * zj.transpose()).array();
	w0.array() -= kEta * (delta_j.tail(kNumHidden) * xi.transpose()).array();
}
VectorXd feedFoward(const VectorXd &in, const MatrixXd &w0, const MatrixXd &w1)
{
	VectorXd xi(1 + kNumInput);
	xi(0) = 1.0;
	xi.tail(kNumInput) = in;
	VectorXd aj = w0 * xi;
	VectorXd zj(1 + kNumHidden);
	zj(0) = 1.0;
	zj.tail(kNumHidden) = aj.unaryExpr(lambda_act);
	VectorXd yk = w1 * zj;
	//Softmax(yk);
	return yk;
}
void setup()
{
	Serial.begin(9600);
	Serial.println("ok0");
	VectorXd x[4];
	for (int i = 0; i < 4; ++i)
	{
		x[i] = VectorXd::Zero(2);
	}
	x[0] << 0.0, 0.0;
	x[1] << 0.0, 1.0;
	x[2] << 1.0, 0.0;
	x[3] << 1.0, 1.0;
	VectorXd t[4];
	for (int i = 0; i < 4; ++i)
	{
		t[i] = VectorXd::Zero(1);
	}
	t[0] << 0.0;
	t[1] << 1.0;
	t[2] << 1.0;
	t[3] << 0.0;
	MatrixXd w0 = MatrixXd::Random(kNumHidden, 1 + kNumInput);
	MatrixXd w1 = MatrixXd::Random(kNumOutput, 1 + kNumHidden);
	Serial.println("ok0");
	for (int n = 0; n < 1000; ++n)
	{
		for (int i = 0; i < 4; ++i)
		{
			learn(x[i], t[i], w0, w1);
			delay(10);
		}
		Serial.println(n);
	}
	for (int i = 0; i < 4; ++i)
	{
		print_m(feedFoward(x[i], w0, w1));
	}
}
void loop()
{
	delay(300);
}


以上。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?