0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

paizaでsympy

Last updated at Posted at 2019-01-23

概要

sympyが、魔法なので、paizaで、やってみた。

練習問題

# coding: utf-8
# Your code here!

import sympy as sym

x = sym.symbols('x')
print ("expand - 展開")
print (sym.expand((x + 1) ** 2))
print ("factor - 因数分解")
print (sym.factor(x ** 4 - 3 * x ** 2 + 1))
print (sym.factor(x ** 3 - x ** 2 - 3 * x + 3))
print ("simplify - 簡約")
print (sym.simplify((x ** 3 + x ** 2 - x - 1) / (x ** 2 + 2 * x + 1)))
print (sym.simplify(x ** 2 / (2 * x ** (4 / 3)) ** 3))
print (sym.simplify((2 * x ** (4 / 3)) ** 2 / x ** (2 / 3)))
print (sym.simplify(1 / x + (x * sym.sin(x) - 1) / x))
print ("limit - 極限")
print (sym.limit(x, x, sym.oo))
print (sym.limit(x, x, sym.O))
print ("diff - 微分")
print (sym.diff(sym.cos(x), x))
print (sym.diff(x ** 3 + x ** 2 - x - 1, x))
print (sym.diff(sym.cos(x)))
print (sym.diff(sym.exp(x)))
print (sym.diff(sym.log(x)))
print ("integrate - 積分")
print (sym.integrate(sym.cos(x), x))
print (sym.integrate(x ** 3 + x ** 2 - x - 1, x))
print (sym.integrate(sym.cos(x)))
print (sym.integrate(sym.exp(x)))
print (sym.integrate(sym.log(x)))
print ("Matrix - 行列")
print (sym.Matrix([[1, 2, 3], [-2, 0, 4]]))
print ("solve - 式を解く")
print (sym.solve(x ** 2 - 1, x))
print (sym.solve(x ** 2 - 3 * x + 2))
print (sym.solve(x ** 2 + x + 1))
print (sym.solve(x ** 3 + 2 * x ** 2 + 4 * x + 8, x))

結果

expand - 展開
x**2 + 2*x + 1
factor - 因数分解
(x**2 - x - 1)*(x**2 + x - 1)
(x - 1)*(x**2 - 3)
simplify - 簡約
x - 1
x**(-2.0)/8
4*x**2.0
sin(x)
limit - 極限
oo
<class 'sympy.series.order.Order'>
diff - 微分
-sin(x)
3*x**2 + 2*x - 1
-sin(x)
exp(x)
1/x
integrate - 積分
sin(x)
x**4/4 + x**3/3 - x**2/2 - x
sin(x)
exp(x)
x*log(x) - x
Matrix - 行列
Matrix([[1, 2, 3], [-2, 0, 4]])
solve - 式を解く
[-1, 1]
[1, 2]
[-1/2 - sqrt(3)*I/2, -1/2 + sqrt(3)*I/2]
[-2, -2*I, 2*I]

成果物

以上。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?