1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

kelpnetの作法 その2

Last updated at Posted at 2019-06-29

概要

kelpnetの作法を調べてみた。
fizzbuzzやってみた。

サンプルコード

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using KelpNet;

namespace ConsoleApp3
{
    class Program
    {
        const int EPOCH = 1000;
        const int N = 100;
        static void Main(string[] args)
        {
            Real[][] trainData = new Real[N][];
            Real[][] trainLabel = new Real[N][];
            for (int i = 0; i < N; i++)
            {
                int a = (i >> 6) % 2;
                int b = (i >> 5) % 2;
                int c = (i >> 4) % 2;
                int d = (i >> 3) % 2;
                int e = (i >> 2) % 2;
                int f = (i >> 1) % 2;
                int g = i % 2;
                trainData[i] = new[] { (Real)a, (Real)b, (Real)c, (Real)d, (Real)e, (Real)f, (Real)g  };
            }
            for (int i = 0; i < N; i++)
            {
                if (i % 15 == 0)
                {
                    trainLabel[i] = new Real[] { 3 };
                }
                else if (i % 5 == 0)
                {
                    trainLabel[i] = new Real[] { 2 };
                }
                else if (i % 3 == 0)
                {
                    trainLabel[i] = new Real[] { 1 };
                }
                else
                {
                    trainLabel[i] = new Real[] { 0 };
                }

            }
            FunctionStack nn = new FunctionStack(new Linear(7, 40, name: "l1 Linear"), new Sigmoid(name: "l1 Tanh"), new Linear(40, 4, name: "l2 Linear"));
            nn.SetOptimizer(new MomentumSGD());
            Console.WriteLine("Train Start...");
            for (int i = 0; i < EPOCH; i++)
            {
                Real loss = 0;
                for (int j = 0; j < N; j++)
                {
                    loss += Trainer.Train(nn, trainData[j], trainLabel[j], new SoftmaxCrossEntropy());
                }
                if (i % 100 == 0)
                {
                    Console.WriteLine("loss:" + loss / N);
                }
            }
            Console.WriteLine("Test Start...");
            for (int j = 0; j < N; j++)
            {
                NdArray result = nn.Predict(trainData[j])[0];
                int resultIndex = Array.IndexOf(result.Data, result.Data.Max());
                if (resultIndex == 3)
                {
                    Console.Write("fizzbuzz");
                }
                else if (resultIndex == 2)
                {
                    Console.Write("buzz");
                }
                else if (resultIndex == 1)
                {
                    Console.Write("fizz");
                }
                else
                {
                    Console.Write(j);
                }
                Console.Write(" ");
            }
            Console.WriteLine("Press any key to exit.");
            Console.ReadKey();
        }
    }
}



結果

image.png

以上。

1
1
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
1

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?