Posted at

raspberry pi 1でtensorflow lite その3


概要

raspberry pi 1でtensorflow liteやってみた。

tfliteファイルを作ってみた。

kerasモデルから作ってみた。

データセットは、xor.


環境

tensorflow 1.12


kerasモデルを学習してセーブする。

import numpy as np 

from tensorflow.contrib.keras.api.keras.models import Sequential, model_from_json
from tensorflow.contrib.keras.api.keras.layers import Dense, Dropout, Activation
from tensorflow.contrib.keras.api.keras.optimizers import SGD
import os.path

X = np.array([[0, 0], [0, 1.0], [1.0, 0], [1.0, 1.0]])
y = np.array([[0.0], [1.0], [1.0], [0.0]])
model = Sequential()
model.add(Dense(8, input_dim = 2))
model.add(Activation('tanh'))
model.add(Dense(1))
model.add(Activation('sigmoid'))
sgd = SGD(lr = 0.1)
model.compile(loss = 'binary_crossentropy', optimizer = sgd)
model.save('_model.h5')
model.fit(X, y, batch_size = 1, epochs = 300)
model.summary();
print (model.predict_proba(X))
print ('save model')
model.save('c_model.h5')
json_string = model.to_json()
open(os.path.join('./', 'xor_model.json'), 'w').write(json_string)
yaml_string = model.to_yaml()
open(os.path.join('./', 'xor_model.yaml'), 'w').write(yaml_string)
print ('save weights')
model.save_weights(os.path.join('./', 'xor_model.h5'))
model1 = model_from_json(open(os.path.join('./', 'xor_model.json')).read())
model1.load_weights(os.path.join('./', 'xor_model.h5'))
model1.summary();
model1.compile(loss = 'binary_crossentropy', optimizer = 'sgd')
score = model1.evaluate(X, y, verbose = 0)
print (score)
print (model1.predict_proba(X))


kerasモデルをtfliteファイルに変換する。

import tensorflow as tf

import tensorflow.contrib.lite as lite

converter = lite.TFLiteConverter.from_keras_model_file("c_model.h5")
tflite_model = converter.convert()
open("xor_model.tflite", "wb").write(tflite_model)
print ("ok")


tfliteファイルを用いて、検証する。

import numpy as np

import tensorflow as tf
import tensorflow.contrib.lite as lite

interpreter = lite.Interpreter(model_path = "xor_model.tflite")
interpreter.allocate_tensors()
input_details = interpreter.get_input_details()
output_details = interpreter.get_output_details()
print (input_details)
print (output_details)
input_shape = input_details[0]['shape']
input_data = np.array([[0.0, 0.0]], dtype = np.float32)
print(input_data)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
print (output_data)
input_data = np.array([[1.0, 0.0]], dtype = np.float32)
print(input_data)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
print (output_data)
input_data = np.array([[0.0, 1.0]], dtype = np.float32)
print(input_data)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
print (output_data)
input_data = np.array([[1.0, 1.0]], dtype = np.float32)
print(input_data)
interpreter.set_tensor(input_details[0]['index'], input_data)
interpreter.invoke()
output_data = interpreter.get_tensor(output_details[0]['index'])
print (output_data)

以上。