0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

scipyのodeintを理解したかった。

Last updated at Posted at 2017-12-23

概要

scipyのodeintを理解したかった。

写真

odeint0.png

サンプルコード

import numpy as np
from scipy.integrate import odeint
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt

def F(d, t):
	rho, theta, z = d
	drhodt = 0
	dthetadt = 1
	dzdt = -1
	return [drhodt, dthetadt, dzdt]

rho0 = 1
theta0 = 0
z0 = 100
tspan = np.linspace(0, 20, 100)
sol = odeint(F, [rho0, theta0, z0], tspan)
rho = sol[ : , 0]
theta = sol[ : , 1]
z = sol[ : , 2]
X = rho * np.cos(theta)
Y = rho * np.sin(theta)
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.plot(X, Y, z)
plt.savefig('./odeint0.png')
plt.show()

写真

odeint1.png

サンプルコード

import numpy as np
from scipy.integrate import odeint
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

def F(v, t, p, r, b):
	return [-p * v[0] + p * v[1], -v[0] * v[2] + r * v[0] - v[1], v[0] * v[1] - b * v[2]]

v0 = [0.3, 0.3, 0.3]
t = np.arange(0, 100, 0.01)
p = 10
r = 28
b = 3 / 3
v = odeint(F, v0, t, args = (p, r, b))
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.plot(v[ : , 0], v[ : , 1], v[ : , 2])
plt.savefig('./odeint1.png')
plt.show()


写真

odeint10.png

サンプルコード

import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.integrate import odeint

def F(X, t):
	x, y, z = X
	return [-y - z, x + a * y, b + z * (x - c)]

dt = 5e-3
x = 0
y = 0
z = 0
x0 = (1, 1, 1)
a = 0.1
b = 0.1
c = 10
t_werte = np.arange(0, 500, dt)
erg = odeint(F, x0, t_werte)
x_, y_, z_ = erg[len(erg) / 4 : ].transpose()
fig = plt.figure()
ax = fig.gca(projection = '3d')
ax.plot(x_, y_, z_, "k,", alpha = 0.2, rasterized = True)
plt.savefig('./odeint10.png')
plt.show()



以上。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?