0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 5 years have passed since last update.

chainerの作法 その2

Posted at

概要

chainerの作法、調べてみた。
回帰。

インポート

import numpy as np
import matplotlib.pyplot as plt
import chainer
from chainer import Function, gradient_check, Variable, optimizers, serializers, utils
from chainer import Link, Chain, ChainList
import chainer.functions as F
import chainer.links as L

訓練データセットのイテレーション

-3.0から+3.0の100点
sinが教師データ
dataset、iteratorは、使わん。

	X = np.linspace(-3.0, 3.0, num = 100, dtype = np.float32)
	T = np.sin(X)

ミニバッチに対する前処理

エポックは、300
ミニバッチは、100

	n_epoch = 300
	n_batch = 100

ニューラルネットワークのForward/backward計算

回帰なので、活性化関数は、tanh
lossは、mean_squared

class MLP(Chain):
	def __init__(self):
		super(MLP, self).__init__(l1 = L.Linear(1, 20), l2 = L.Linear(20, 1), )
	def __call__(self, x):
		h = F.tanh(self.l1(x))
		out = self.l2(h)
		return out

class M_fit(Chain):
	def __init__(self, predictor):
		super(M_fit, self).__init__(predictor = predictor)
	def __call__(self, x, t):
		y = self.predictor(x)
		loss = F.mean_squared_error(y, t) * 0.5
		return loss
	def predict(self, x):
		y = self.predictor(x)
		return y

パラメータの更新

オプチマイザーは、Adam

optimizer = optimizers.Adam()
	optimizer.setup(model)

評価データセットにおける現在のパラメータの評価

Variableに、データを流し込む。

	for epoch in range(n_epoch):
		indexes = np.random.permutation(np.size(X))
		for i in range(n_batch):
			model.zerograds()
			x = Variable(np.array([[X[indexes[i]]]], dtype = np.float32))
			t = Variable(np.array([[T[indexes[i]]]], dtype = np.float32))
			loss = model(x, t)
			loss.backward()
			optimizer.update()

中間結果をログに残す

エポックとloss。

		print ('epoch : ', epoch, 'loss : ', loss.data)

結果

いい感じ。

sin1.png

以上。

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?