はじめに
機械学習モデルを本格的に運用し始めると、必ずこんな疑問が浮かびませんか?
「なぜこの予測結果になったの?」
「モデルの判断根拠を説明する必要があるけど...」
「TypeScriptで機械学習の解釈性を実装できる?」
本記事では、GCP Explainable AIを使ってTypeScriptでAIの判断根拠を可視化・説明する方法を、実際のコード例とともに解説します。
GCP Explainable AIとは
GCP Explainable AIは、機械学習モデルの予測結果の根拠を理解するためのサービスです。
機能 | 説明 | 適用場面 |
---|---|---|
Feature-based説明 | 各特徴量の寄与度を分析 | 表形式データ、画像分類 |
Example-based説明 | 類似した訓練データを特定 | 異常検知、データ品質改善 |
複数の解釈手法 | Shapley値、勾配統合、XRAI | モデルタイプに応じた最適化 |
TypeScript環境のセットアップ
1. 必要なパッケージのインストール
npm install @google-cloud/aiplatform @google-cloud/storage
npm install @types/node dotenv
2. 環境設定
src/config/gcp-config.ts
import * as dotenv from 'dotenv';
dotenv.config();
export const GCP_CONFIG = {
projectId: process.env.GOOGLE_CLOUD_PROJECT_ID!,
location: process.env.GOOGLE_CLOUD_LOCATION || 'us-central1',
keyFilename: process.env.GOOGLE_APPLICATION_CREDENTIALS,
// Vertex AI設定
vertexAI: {
apiEndpoint: `${process.env.GOOGLE_CLOUD_LOCATION || 'us-central1'}-aiplatform.googleapis.com`
}
} as const;
// 環境変数の検証
export function validateConfig(): void {
const required = ['GOOGLE_CLOUD_PROJECT_ID'];
for (const key of required) {
if (!process.env[key]) {
throw new Error(`必須の環境変数が設定されていません: ${key}`);
}
}
}
3. Vertex AI Clientの初期化
src/services/vertex-ai-client.ts
import { PredictionServiceClient } from '@google-cloud/aiplatform';
import { GCP_CONFIG, validateConfig } from '../config/gcp-config';
export class VertexAIClient {
private predictionClient: PredictionServiceClient;
constructor() {
validateConfig();
this.predictionClient = new PredictionServiceClient({
apiEndpoint: GCP_CONFIG.vertexAI.apiEndpoint,
keyFilename: GCP_CONFIG.keyFilename
});
}
/**
* エンドポイントのパスを生成
*/
getEndpointPath(modelId: string): string {
return this.predictionClient.endpointPath(
GCP_CONFIG.projectId,
GCP_CONFIG.location,
modelId
);
}
/**
* 予測クライアントを取得
*/
getPredictionClient(): PredictionServiceClient {
return this.predictionClient;
}
}
Explainable AI実装の基本
1. Feature Attribution(特徴量寄与度分析)
src/explainable/feature-attribution.ts
import { VertexAIClient } from '../services/vertex-ai-client';
import { GCP_CONFIG } from '../config/gcp-config';
export interface FeatureAttributionConfig {
method: 'sampled-shapley' | 'integrated-gradients' | 'xrai';
pathCount?: number;
stepCount?: number;
}
export interface AttributionResult {
featureAttributions: {
featureName: string;
attribution: number;
baselineValue?: number;
}[];
outputName: string;
approxError?: number;
}
export class FeatureAttributionAnalyzer {
private vertexClient: VertexAIClient;
constructor() {
this.vertexClient = new VertexAIClient();
}
/**
* 表形式データの特徴量寄与度を分析(Sampled Shapley)
*/
async analyzeTabularFeatures(
modelEndpoint: string,
instances: Record<string, any>[],
config: FeatureAttributionConfig = { method: 'sampled-shapley' }
): Promise<AttributionResult[]> {
const client = this.vertexClient.getPredictionClient();
try {
const explanationSpec = {
parameters: this.buildExplanationParameters(config),
metadata: {
inputs: this.buildInputMetadata(instances[0])
}
};
const request = {
endpoint: this.vertexClient.getEndpointPath(modelEndpoint),
instances: instances.map(instance => ({ value: instance })),
explanationSpec
};
const [response] = await client.explain(request);
return this.parseAttributionResponse(response);
} catch (error) {
console.error('特徴量寄与度分析でエラーが発生:', error);
throw new Error(`特徴量分析に失敗しました: ${error}`);
}
}
/**
* 画像データの特徴量寄与度を分析(Integrated Gradients / XRAI)
*/
async analyzeImageFeatures(
modelEndpoint: string,
imageBase64: string,
config: FeatureAttributionConfig = { method: 'integrated-gradients', stepCount: 50 }
): Promise<AttributionResult[]> {
const client = this.vertexClient.getPredictionClient();
try {
const explanationSpec = {
parameters: this.buildExplanationParameters(config),
metadata: {
inputs: {
'image': {
inputTensorName: 'image',
encoding: 'base64',
modality: 'image'
}
}
}
};
const request = {
endpoint: this.vertexClient.getEndpointPath(modelEndpoint),
instances: [{
image: { b64: imageBase64 }
}],
explanationSpec
};
const [response] = await client.explain(request);
return this.parseAttributionResponse(response);
} catch (error) {
console.error('画像特徴量分析でエラーが発生:', error);
throw new Error(`画像分析に失敗しました: ${error}`);
}
}
/**
* 解釈パラメータを構築
*/
private buildExplanationParameters(config: FeatureAttributionConfig) {
switch (config.method) {
case 'sampled-shapley':
return {
sampledShapleyAttribution: {
pathCount: config.pathCount || 10
}
};
case 'integrated-gradients':
return {
integratedGradientsAttribution: {
stepCount: config.stepCount || 50,
smoothGradConfig: {
noiseSigma: 0.15,
noisySampleCount: 25
}
}
};
case 'xrai':
return {
xraiAttribution: {
stepCount: config.stepCount || 50,
smoothGradConfig: {
noiseSigma: 0.15,
noisySampleCount: 25
}
}
};
default:
throw new Error(`未対応の解釈手法: ${config.method}`);
}
}
/**
* 入力メタデータを構築
*/
private buildInputMetadata(sampleInstance: Record<string, any>) {
const metadata: Record<string, any> = {};
for (const [key, value] of Object.entries(sampleInstance)) {
metadata[key] = {
inputTensorName: key,
encoding: typeof value === 'string' ? 'text' : 'numeric',
modality: typeof value === 'string' ? 'text' : 'numeric'
};
}
return metadata;
}
/**
* レスポンスを解析
*/
private parseAttributionResponse(response: any): AttributionResult[] {
const results: AttributionResult[] = [];
if (response.explanations) {
for (const explanation of response.explanations) {
if (explanation.attributions) {
for (const attribution of explanation.attributions) {
results.push({
featureAttributions: this.extractFeatureAttributions(attribution),
outputName: attribution.outputName || 'default',
approxError: attribution.approximationError
});
}
}
}
}
return results;
}
/**
* 特徴量寄与度を抽出
*/
private extractFeatureAttributions(attribution: any) {
const features = [];
if (attribution.featureAttributions) {
for (const [featureName, value] of Object.entries(attribution.featureAttributions)) {
features.push({
featureName,
attribution: typeof value === 'number' ? value : (value as any).value || 0,
baselineValue: (value as any).baselineValue
});
}
}
return features.sort((a, b) => Math.abs(b.attribution) - Math.abs(a.attribution));
}
}
2. 事例ベース説明
src/explainable/example-based.ts
import { VertexAIClient } from '../services/vertex-ai-client';
export interface ExampleBasedConfig {
neighborCount?: number;
returnEmbeddings?: boolean;
}
export interface SimilarExample {
exampleId: string;
similarity: number;
embedding?: number[];
metadata?: Record<string, any>;
}
export interface ExampleBasedResult {
query: any;
neighbors: SimilarExample[];
explanationType: 'example-based';
}
export class ExampleBasedAnalyzer {
private vertexClient: VertexAIClient;
constructor() {
this.vertexClient = new VertexAIClient();
}
/**
* 類似事例を検索して説明を生成
*/
async findSimilarExamples(
modelEndpoint: string,
queryInstance: Record<string, any>,
config: ExampleBasedConfig = {}
): Promise<ExampleBasedResult> {
const client = this.vertexClient.getPredictionClient();
try {
const explanationSpec = {
parameters: {
examples: {
neighborCount: config.neighborCount || 5,
returnEmbeddings: config.returnEmbeddings || false
}
}
};
const request = {
endpoint: this.vertexClient.getEndpointPath(modelEndpoint),
instances: [{ value: queryInstance }],
explanationSpec
};
const [response] = await client.explain(request);
return this.parseExampleBasedResponse(response, queryInstance);
} catch (error) {
console.error('類似事例検索でエラーが発生:', error);
throw new Error(`事例ベース分析に失敗しました: ${error}`);
}
}
/**
* 異常検知のための事例分析
*/
async detectAnomalies(
modelEndpoint: string,
instances: Record<string, any>[],
threshold: number = 0.7
): Promise<{
anomalies: Array<{
instance: Record<string, any>;
anomalyScore: number;
explanation: ExampleBasedResult;
}>;
normal: Array<{
instance: Record<string, any>;
similarityScore: number;
}>;
}> {
const results = {
anomalies: [] as any[],
normal: [] as any[]
};
for (const instance of instances) {
const explanation = await this.findSimilarExamples(modelEndpoint, instance);
// 最も類似度の高い事例の類似度を確認
const maxSimilarity = Math.max(...explanation.neighbors.map(n => n.similarity));
if (maxSimilarity < threshold) {
results.anomalies.push({
instance,
anomalyScore: 1 - maxSimilarity,
explanation
});
} else {
results.normal.push({
instance,
similarityScore: maxSimilarity
});
}
}
return results;
}
/**
* レスポンスを解析
*/
private parseExampleBasedResponse(response: any, query: Record<string, any>): ExampleBasedResult {
const neighbors: SimilarExample[] = [];
if (response.explanations && response.explanations[0]?.neighbors) {
for (const neighbor of response.explanations[0].neighbors) {
neighbors.push({
exampleId: neighbor.neighborId || `example_${neighbors.length}`,
similarity: neighbor.neighborDistance || 0,
embedding: neighbor.embedding,
metadata: neighbor.metadata
});
}
}
return {
query,
neighbors: neighbors.sort((a, b) => b.similarity - a.similarity),
explanationType: 'example-based'
};
}
}
実用的な解釈分析システム
1. 統合解釈分析クラス
src/explainable/explanation-system.ts
import { FeatureAttributionAnalyzer, AttributionResult } from './feature-attribution';
import { ExampleBasedAnalyzer, ExampleBasedResult } from './example-based';
export interface ExplanationRequest {
modelEndpoint: string;
instance: Record<string, any>;
explanationTypes: Array<'feature-attribution' | 'example-based'>;
config?: {
attribution?: any;
examples?: any;
};
}
export interface ComprehensiveExplanation {
instance: Record<string, any>;
predictions: any[];
featureAttribution?: AttributionResult[];
exampleBased?: ExampleBasedResult;
summary: {
topFeatures: string[];
confidence: number;
explanation: string;
};
}
export class ExplanationSystem {
private featureAnalyzer: FeatureAttributionAnalyzer;
private exampleAnalyzer: ExampleBasedAnalyzer;
constructor() {
this.featureAnalyzer = new FeatureAttributionAnalyzer();
this.exampleAnalyzer = new ExampleBasedAnalyzer();
}
/**
* 包括的な解釈分析を実行
*/
async explainPrediction(request: ExplanationRequest): Promise<ComprehensiveExplanation> {
const explanation: ComprehensiveExplanation = {
instance: request.instance,
predictions: [],
summary: {
topFeatures: [],
confidence: 0,
explanation: ''
}
};
try {
// Feature Attribution分析
if (request.explanationTypes.includes('feature-attribution')) {
explanation.featureAttribution = await this.featureAnalyzer.analyzeTabularFeatures(
request.modelEndpoint,
[request.instance],
request.config?.attribution
);
}
// Example-based分析
if (request.explanationTypes.includes('example-based')) {
explanation.exampleBased = await this.exampleAnalyzer.findSimilarExamples(
request.modelEndpoint,
request.instance,
request.config?.examples
);
}
// サマリー生成
explanation.summary = this.generateSummary(explanation);
return explanation;
} catch (error) {
console.error('解釈分析でエラーが発生:', error);
throw new Error(`解釈分析に失敗しました: ${error}`);
}
}
/**
* バッチ解釈分析
*/
async explainBatch(
modelEndpoint: string,
instances: Record<string, any>[],
explanationTypes: Array<'feature-attribution' | 'example-based'> = ['feature-attribution']
): Promise<ComprehensiveExplanation[]> {
const results: ComprehensiveExplanation[] = [];
for (const instance of instances) {
try {
const explanation = await this.explainPrediction({
modelEndpoint,
instance,
explanationTypes
});
results.push(explanation);
} catch (error) {
console.error(`インスタンス ${JSON.stringify(instance)} の解釈に失敗:`, error);
// エラーが発生した場合も基本情報は残す
results.push({
instance,
predictions: [],
summary: {
topFeatures: [],
confidence: 0,
explanation: 'エラーが発生しました'
}
});
}
}
return results;
}
/**
* 解釈結果のサマリーを生成
*/
private generateSummary(explanation: ComprehensiveExplanation) {
const summary = {
topFeatures: [] as string[],
confidence: 0,
explanation: ''
};
if (explanation.featureAttribution && explanation.featureAttribution.length > 0) {
const attributions = explanation.featureAttribution[0];
// 上位特徴量を抽出(絶対値で)
summary.topFeatures = attributions.featureAttributions
.slice(0, 5)
.map(f => f.featureName);
// 信頼度を計算(寄与度の合計から)
const totalAttribution = attributions.featureAttributions
.reduce((sum, f) => sum + Math.abs(f.attribution), 0);
summary.confidence = Math.min(totalAttribution / 10, 1.0);
// 説明文を生成
const topFeature = attributions.featureAttributions[0];
const impact = topFeature.attribution > 0 ? '正の' : '負の';
summary.explanation =
`最も影響が大きい特徴量は「${topFeature.featureName}」で、${impact}影響(寄与度: ${topFeature.attribution.toFixed(3)})を与えています。`;
}
if (explanation.exampleBased) {
const mostSimilar = explanation.exampleBased.neighbors[0];
if (mostSimilar) {
summary.explanation += ` 最も類似した事例との類似度は ${mostSimilar.similarity.toFixed(3)} です。`;
}
}
return summary;
}
}
2. 可視化とレポート生成
src/visualization/explanation-reporter.ts
import { ComprehensiveExplanation } from '../explainable/explanation-system';
import * as fs from 'fs';
import * as path from 'path';
export interface VisualizationOptions {
format: 'html' | 'json' | 'csv';
includeCharts: boolean;
outputPath: string;
}
export class ExplanationReporter {
/**
* 解釈結果をHTMLレポートとして出力
*/
async generateHTMLReport(
explanations: ComprehensiveExplanation[],
options: VisualizationOptions
): Promise<string> {
const htmlContent = `
<!DOCTYPE html>
<html lang="ja">
<head>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width, initial-scale=1.0">
<title>AI解釈レポート</title>
<script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
<style>
body { font-family: 'Helvetica Neue', Arial, sans-serif; margin: 40px; background-color: #f8f9fa; }
.container { max-width: 1200px; margin: 0 auto; background: white; padding: 30px; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.1); }
.explanation { margin-bottom: 40px; padding: 20px; border: 1px solid #e0e0e0; border-radius: 8px; background: #fafafa; }
.feature-list { list-style: none; padding: 0; }
.feature-item { padding: 8px 0; border-bottom: 1px solid #eee; }
.positive { color: #28a745; font-weight: bold; }
.negative { color: #dc3545; font-weight: bold; }
.chart-container { width: 100%; height: 300px; margin: 20px 0; }
.summary-box { background: #e7f3ff; padding: 15px; border-left: 4px solid #007bff; margin: 10px 0; }
</style>
</head>
<body>
<div class="container">
<h1>🤖 AI解釈レポート</h1>
<p>生成日時: ${new Date().toLocaleString('ja-JP')}</p>
${this.generateHTMLContent(explanations)}
</div>
</body>
</html>`;
const outputFile = path.join(options.outputPath, 'explanation_report.html');
await fs.promises.writeFile(outputFile, htmlContent, 'utf-8');
return outputFile;
}
/**
* CSVレポート生成
*/
async generateCSVReport(
explanations: ComprehensiveExplanation[],
outputPath: string
): Promise<string> {
const csvHeaders = [
'インスタンス番号',
'上位特徴量',
'信頼度',
'説明',
'最大寄与度',
'最小寄与度'
];
const csvRows = explanations.map((exp, index) => {
const topFeatures = exp.summary.topFeatures.join('; ');
const maxAttribution = exp.featureAttribution?.[0]?.featureAttributions[0]?.attribution || 0;
const minAttribution = exp.featureAttribution?.[0]?.featureAttributions.slice(-1)[0]?.attribution || 0;
return [
index + 1,
`"${topFeatures}"`,
exp.summary.confidence.toFixed(3),
`"${exp.summary.explanation}"`,
maxAttribution.toFixed(3),
minAttribution.toFixed(3)
].join(',');
});
const csvContent = [csvHeaders.join(','), ...csvRows].join('\n');
const outputFile = path.join(outputPath, 'explanation_data.csv');
await fs.promises.writeFile(outputFile, csvContent, 'utf-8');
return outputFile;
}
/**
* HTMLコンテンツ生成
*/
private generateHTMLContent(explanations: ComprehensiveExplanation[]): string {
return explanations.map((exp, index) => `
<div class="explanation">
<h2>📊 予測事例 #${index + 1}</h2>
<div class="summary-box">
<h3>🎯 サマリー</h3>
<p><strong>信頼度:</strong> ${(exp.summary.confidence * 100).toFixed(1)}%</p>
<p><strong>説明:</strong> ${exp.summary.explanation}</p>
</div>
${exp.featureAttribution ? this.generateFeatureAttributionHTML(exp.featureAttribution[0]) : ''}
${exp.exampleBased ? this.generateExampleBasedHTML(exp.exampleBased) : ''}
<details>
<summary>📋 入力データ詳細</summary>
<pre>${JSON.stringify(exp.instance, null, 2)}</pre>
</details>
</div>
`).join('');
}
/**
* 特徴量寄与度のHTML生成
*/
private generateFeatureAttributionHTML(attribution: any): string {
const features = attribution.featureAttributions.slice(0, 10);
return `
<div>
<h3>🔍 特徴量寄与度分析</h3>
<ul class="feature-list">
${features.map(f => `
<li class="feature-item">
<strong>${f.featureName}:</strong>
<span class="${f.attribution > 0 ? 'positive' : 'negative'}">
${f.attribution > 0 ? '+' : ''}${f.attribution.toFixed(4)}
</span>
</li>
`).join('')}
</ul>
</div>
`;
}
/**
* 事例ベース説明のHTML生成
*/
private generateExampleBasedHTML(exampleBased: any): string {
const neighbors = exampleBased.neighbors.slice(0, 5);
return `
<div>
<h3>👥 類似事例分析</h3>
<ul class="feature-list">
${neighbors.map((neighbor, idx) => `
<li class="feature-item">
<strong>類似事例 #${idx + 1}:</strong>
類似度 ${neighbor.similarity.toFixed(3)}
${neighbor.metadata ? ` (${JSON.stringify(neighbor.metadata)})` : ''}
</li>
`).join('')}
</ul>
</div>
`;
}
}
実践的な使用例
1. 信用スコアリングモデルの解釈
src/examples/credit-scoring.ts
import { ExplanationSystem } from '../explainable/explanation-system';
import { ExplanationReporter } from '../visualization/explanation-reporter';
export class CreditScoringExplainer {
private explanationSystem: ExplanationSystem;
private reporter: ExplanationReporter;
constructor() {
this.explanationSystem = new ExplanationSystem();
this.reporter = new ExplanationReporter();
}
/**
* 信用スコアの判定根拠を解釈
*/
async explainCreditDecision(
modelEndpoint: string,
applicantData: {
age: number;
income: number;
debtToIncomeRatio: number;
creditHistory: number;
employmentYears: number;
loanAmount: number;
}
) {
console.log('💳 信用スコアリングの解釈分析を実行中...');
const explanation = await this.explanationSystem.explainPrediction({
modelEndpoint,
instance: applicantData,
explanationTypes: ['feature-attribution', 'example-based'],
config: {
attribution: { method: 'sampled-shapley', pathCount: 20 },
examples: { neighborCount: 5 }
}
});
// 結果の解釈
console.log('\n📊 信用判定の解釈結果:');
console.log(`信頼度: ${(explanation.summary.confidence * 100).toFixed(1)}%`);
console.log(`主要な判定要因: ${explanation.summary.topFeatures.join(', ')}`);
console.log(`説明: ${explanation.summary.explanation}`);
// 詳細分析
if (explanation.featureAttribution) {
console.log('\n🔍 各要因の影響度:');
explanation.featureAttribution[0].featureAttributions.forEach(f => {
const impact = f.attribution > 0 ? '承認寄与' : '拒否寄与';
console.log(` ${f.featureName}: ${f.attribution.toFixed(4)} (${impact})`);
});
}
// 類似事例の確認
if (explanation.exampleBased) {
console.log('\n👥 類似する過去事例:');
explanation.exampleBased.neighbors.forEach((neighbor, idx) => {
console.log(` 事例${idx + 1}: 類似度 ${neighbor.similarity.toFixed(3)}`);
});
}
return explanation;
}
/**
* バッチ処理で複数申請者を解釈
*/
async analyzeCreditBatch(
modelEndpoint: string,
applicants: Array<Record<string, any>>
) {
console.log(`📋 ${applicants.length}件の信用申請を一括解釈中...`);
const explanations = await this.explanationSystem.explainBatch(
modelEndpoint,
applicants,
['feature-attribution']
);
// レポート生成
const reportPath = await this.reporter.generateHTMLReport(explanations, {
format: 'html',
includeCharts: true,
outputPath: './reports'
});
console.log(`📄 レポートが生成されました: ${reportPath}`);
// 統計サマリー
const approvalFactors = this.analyzeCommonFactors(explanations);
console.log('\n📈 承認要因分析:');
console.log(approvalFactors);
return { explanations, reportPath, statistics: approvalFactors };
}
/**
* 共通要因を分析
*/
private analyzeCommonFactors(explanations: any[]) {
const factorCounts: Record<string, { positive: number; negative: number; total: number }> = {};
explanations.forEach(exp => {
if (exp.featureAttribution && exp.featureAttribution[0]) {
exp.featureAttribution[0].featureAttributions.forEach((f: any) => {
if (!factorCounts[f.featureName]) {
factorCounts[f.featureName] = { positive: 0, negative: 0, total: 0 };
}
factorCounts[f.featureName].total++;
if (f.attribution > 0) {
factorCounts[f.featureName].positive++;
} else {
factorCounts[f.featureName].negative++;
}
});
}
});
return Object.entries(factorCounts)
.map(([factor, counts]) => ({
factor,
positiveRate: counts.positive / counts.total,
negativeRate: counts.negative / counts.total,
frequency: counts.total
}))
.sort((a, b) => b.frequency - a.frequency);
}
}
2. 使用方法の実例
src/examples/usage-example.ts
import { CreditScoringExplainer } from './credit-scoring';
async function main() {
const explainer = new CreditScoringExplainer();
// 単一事例の解釈
const singleCase = await explainer.explainCreditDecision(
'credit-model-endpoint-123',
{
age: 35,
income: 75000,
debtToIncomeRatio: 0.3,
creditHistory: 720,
employmentYears: 8,
loanAmount: 250000
}
);
// バッチ解釈
const batchCases = [
{ age: 28, income: 45000, debtToIncomeRatio: 0.4, creditHistory: 650, employmentYears: 3, loanAmount: 180000 },
{ age: 42, income: 95000, debtToIncomeRatio: 0.2, creditHistory: 780, employmentYears: 12, loanAmount: 320000 },
{ age: 25, income: 38000, debtToIncomeRatio: 0.5, creditHistory: 580, employmentYears: 2, loanAmount: 150000 }
];
const batchResults = await explainer.analyzeCreditBatch(
'credit-model-endpoint-123',
batchCases
);
console.log('\n✅ 解釈分析が完了しました!');
}
main().catch(console.error);
まとめ
本記事では、GCP Explainable AIをTypeScriptで活用し、AIモデルの判断根拠を可視化・説明する方法を詳しく解説しました。
✅ GCP Explainable AIのメリット
- 多様な解釈手法: Shapley値、勾配統合、XRAIなど
- Feature + Example分析: 特徴量寄与度と類似事例の両面から解釈
- スケーラブル: バッチ処理による大量データ対応
- 可視化対応: HTMLレポートとCSV出力
🎯 実装のポイント
- 適切な手法選択: データタイプに応じた解釈手法の使い分け
- 包括的分析: Feature AttributionとExample-basedの組み合わせ
- 自動レポート: HTML/CSV形式での結果可視化
- エラーハンドリング: 堅牢な例外処理とフォールバック
実用的な応用場面
- 金融: 信用スコアリング、リスク評価の根拠説明
- 医療: 診断支援AIの判断根拠の可視化
- 製造: 品質管理AIの異常検知理由の特定
- マーケティング: 顧客行動予測の要因分析
TypeScriptでExplainable AIを実装することで、AIシステムの透明性と信頼性を大幅に向上させることができます。ぜひあなたのプロジェクトでも活用してみてください!