0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

数学検定 準1級受験メモ: 楕円の接線の方程式導出

Posted at

楕円とは

楕円の方程式は次の式で与えられる.
$$ \frac{x^2}{a^2} + \frac{y^2}{b^2}= 1$$

焦点は$F = (\pm \sqrt{a^2 - b^2}, 0)$で与えられる.

図示すると以下のようになります.

楕円の接線の方程式の導出

まず楕円の方程式を次のように変形する.
$$ y^2 = b^2 - \frac{b^2}{a^2}x^2 $$

次に上式の両辺を x で微分する.
$$ 2y \frac{dy}{dx} = - 2 \frac{b^2}{a^2} x$$

よって,
$$ \frac{dy}{dx} = - \frac{b^2}{a^2} \frac{x}{y}$$

さて,接線の方程式は$x$の一次式なので
$$ y - y_0 = m (x - x_0) $$
で与えられる.

ここで,$m$は接線の傾きであり,$(x_0, y_0)$は接線と楕円の接点の座標である.
接点にて接線の傾きは $m = - \frac{b^2}{a^2} \frac{x_0}{y_0}$ である.
あくまで「接点での傾き」なので$- \frac{b^2}{a^2} \frac{x}{y}$ではなく$- \frac{b^2}{a^2} \frac{x_0}{y_0}$である.

この傾きを接線の方程式に代入すると
$$ y - y_0 = - \frac{b^2}{a^2} \frac{x_0}{y_0} (x - x_0) $$
この式を展開していくと,

$$ y = - \frac{b^2}{a^2} \frac{x_0}{y_0} (x - x_0) + y_0 $$

$$ y_0 y = - \frac{b^2}{a^2} x_0 (x - x_0) + {y_0}^2 $$

$$ y_0 y = - \frac{b^2}{a^2} x_0 x + \frac{b^2}{a^2} {x_0}^2 + {y_0}^2 $$

$$ \frac{y_0 y}{b^2} = - \frac{x_0 x}{a^2} + \frac{{x_0}^2}{a^2} + \frac{{y_0}^2}{b^2} $$

$\frac{{x_0}^2}{a^2} + \frac{{y_0}^2}{b^2} = 1$ なので

$$ \frac{y_0 y}{b^2} + \frac{x_0 x}{a^2} = 1 $$

以上,接線の方程式が求められました.

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?