0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

#51 √2の近似値を二分法で計算してみた

Posted at

概要

√2の近似値を二分法で計算してみようと思います。√2に限らず、JavaScriptで表せる任意の正の実数であれば同じように計算できます

手順

以下の手順で近似値を求めます

  1. 最小値と最大値の中間値を求める
  2. 1で求めた値が目的の値より小さい場合は最小値を、大きい場合は最大値を1で求めた値に置き換える
  3. 任意の精度(※)に達していなければ1に戻る

※JavaScriptではNumber.EPSILON(2^-52)より小さな差を表現できないので、今回はそこを目標にします

実装

2の平方根は2より小さいことが知られているので、

  • 最小値: 0
  • 最大値: 2

を初期値として設定し、計算を行います

let targetNumber = 2;
let min = 0;
let max = 2;
let count = 0;

//もし誤差が小さければループを抜ける
while (!((max - Number.EPSILON) - (min + Number.EPSILON) <= Number.EPSILON)) {
    //最小値と最大値の中間を求める
    let sqrt = (min + max) / 2;

    //√2の候補を2乗する
    let t2 = sqrt ** 2;

    //もし中間値が目的値より小さいなら範囲の最小値を更新、そうでないなら最大値を更新
    if (t2 < targetNumber) {
        min = sqrt;
    }
    else {
        max = sqrt;
    }

    count++;
    console.log(`count: ${count}`);
    console.log(`√${targetNumber}${min}${max}`);
}

実行結果

実行結果として

count: 1
√2 ≒ 1~2
count: 2
√2 ≒ 1~1.5
count: 3
√2 ≒ 1.25~1.5
count: 4
√2 ≒ 1.375~1.5
count: 5
√2 ≒ 1.375~1.4375
count: 6
√2 ≒ 1.40625~1.4375
count: 7
√2 ≒ 1.40625~1.421875
count: 8
√2 ≒ 1.4140625~1.421875
count: 9
√2 ≒ 1.4140625~1.41796875
count: 10
√2 ≒ 1.4140625~1.416015625
count: 11
√2 ≒ 1.4140625~1.4150390625
count: 12
√2 ≒ 1.4140625~1.41455078125
count: 13
√2 ≒ 1.4140625~1.414306640625
count: 14
√2 ≒ 1.4141845703125~1.414306640625
count: 15
√2 ≒ 1.4141845703125~1.41424560546875
count: 16
√2 ≒ 1.4141845703125~1.414215087890625
count: 17
√2 ≒ 1.4141998291015625~1.414215087890625
count: 18
√2 ≒ 1.4142074584960938~1.414215087890625
count: 19
√2 ≒ 1.4142112731933594~1.414215087890625
count: 20
√2 ≒ 1.4142131805419922~1.414215087890625
count: 21
√2 ≒ 1.4142131805419922~1.4142141342163086
count: 22
√2 ≒ 1.4142131805419922~1.4142136573791504
count: 23
√2 ≒ 1.4142134189605713~1.4142136573791504
count: 24
√2 ≒ 1.4142135381698608~1.4142136573791504
count: 25
√2 ≒ 1.4142135381698608~1.4142135977745056
count: 26
√2 ≒ 1.4142135381698608~1.4142135679721832
count: 27
√2 ≒ 1.414213553071022~1.4142135679721832
count: 28
√2 ≒ 1.4142135605216026~1.4142135679721832
count: 29
√2 ≒ 1.4142135605216026~1.414213564246893
count: 30
√2 ≒ 1.4142135605216026~1.4142135623842478
count: 31
√2 ≒ 1.4142135614529252~1.4142135623842478
count: 32
√2 ≒ 1.4142135619185865~1.4142135623842478
count: 33
√2 ≒ 1.4142135621514171~1.4142135623842478
count: 34
√2 ≒ 1.4142135622678325~1.4142135623842478
count: 35
√2 ≒ 1.4142135623260401~1.4142135623842478
count: 36
√2 ≒ 1.414213562355144~1.4142135623842478
count: 37
√2 ≒ 1.4142135623696959~1.4142135623842478
count: 38
√2 ≒ 1.4142135623696959~1.4142135623769718
count: 39
√2 ≒ 1.4142135623696959~1.4142135623733338
count: 40
√2 ≒ 1.4142135623715149~1.4142135623733338
count: 41
√2 ≒ 1.4142135623724243~1.4142135623733338
count: 42
√2 ≒ 1.414213562372879~1.4142135623733338
count: 43
√2 ≒ 1.414213562372879~1.4142135623731065
count: 44
√2 ≒ 1.4142135623729928~1.4142135623731065
count: 45
√2 ≒ 1.4142135623730496~1.4142135623731065
count: 46
√2 ≒ 1.414213562373078~1.4142135623731065
count: 47
√2 ≒ 1.4142135623730923~1.4142135623731065
count: 48
√2 ≒ 1.4142135623730923~1.4142135623730994
count: 49
√2 ≒ 1.4142135623730923~1.4142135623730958
count: 50
√2 ≒ 1.414213562373094~1.4142135623730958
count: 51
√2 ≒ 1.414213562373095~1.4142135623730958
count: 52
√2 ≒ 1.414213562373095~1.4142135623730954

という結果が求められました

まとめ

JavaScriptでは倍精度浮動小数点数しか扱えないため、16桁程度の精度までしか求めることができませんでした

次回は任意精度での計算に挑戦してみようと思います

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?