0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

CUDA環境の構築

Last updated at Posted at 2024-12-13

やったこと
基本的に
・NvidiaのGPUドライバー
・CUDA toolkit
・cuDNN
・Pytorch
のバージョンが合わないといけない

  1. GPUの確認
      タスクマネージャからバージョンを確認
    1. NVIDIAドライバのダウンロード
     0で調べたバージョンに適したドライバをダウンロード
    https://www.nvidia.com/download/index.aspx?lang=en-us
    2.Tools for Visual studioをダウンロード
    https://visualstudio.microsoft.com/ja/downloads/
    3.CUDAツールキットをダウンロード
     この際、computeCapabilityとドライバのバージョンから適切なものを選ぶ
    https://developer.nvidia.com/cuda-gpus
    https://docs.nvidia.com/deploy/cuda-compatibility/index.html#faq
    https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html#cuda-12-0-release-notes
    4.CuDNNをダウンロード
     https://docs.nvidia.com/deeplearning/cudnn/archives/index.html
    のNVIDIA cuDNN support matrixから適切なバージョンを調べる
    https://docs.nvidia.com/deeplearning/cudnn/archives/cudnn-897/support-matrix/index.html
    https://developer.nvidia.com/rdp/cudnn-archive

5.Pytorchをダウンロード(Pytorchには対応したCUDAバージョンがあるので確認)
https://pytorch.org/

参考
CUDAインストールまで
https://aizine.ai/cuda-install1113/

CUDA×Pytorch
https://qiita.com/motoyuki1963/items/a334c9488c2f55a867cf

CUDAとcuCNN
http://mikami3345.html.xdomain.jp/CUDA/CudaCompatibility.html

0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?