1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 1 year has passed since last update.

blueqat機能色々(TIPS;自分用まとめ)

Last updated at Posted at 2021-02-17

回路記述

import

from blueqat import Circuit

回路作成

Circuit().h[0] # hadamard
Circuit.rx(x)[i] # x-deg. Rx gate acts on i-th qubit
Circuit.cnot()[0,1] # c-not
Circuit().h[0].m[:] # hadamard+measure

回路の合成

subcircuit0 = data_encoding(data0)
subcircuit1 = data_encoding(data1).dagger()
circuit = subcircuit0 + subcircuit1 # add

回路実行

Circuit().h[0].n[:].run() # tensor-network simulator (returns samples)
Circuit().h[0].n[:].run(backend="numpy") # state-vector simulator (returns a vector)
Circuit().h[0].n[:].run(backend="draw") # circuit drawing

statevector(array)をケットベクトルで書く


import math
def print_Zbasis_expression(statevector):
    nqubit = int(math.log2(np.size(statevector)))
    for i in range(2**nqubit):
        print('+({:.2f})*|{number:0{width}b}>'.format(statevector[i],number=i,width=nqubit),end='')

State_out = Circuit(1).h[0].run(backend="numpy")
print_Zbasis_expression(State_out)

+(0.71+0.00j)*|0>+(0.71+0.00j)*|1>

blueqat on qiskit simulator

circ.run_with_ibmq(returns='draw', output='mpl')

または以下の方法。
https://github.com/Blueqat/Blueqat-tutorials/blob/master/tutorial-ja/702_backend1_ja.ipynb


import warnings
from collections import Counter
from blueqat.backends.qasm_parser_backend_generator import generate_backend

def _qasm_runner_qiskit(qasm, qiskit_backend=None, shots=None, returns=None, **kwargs):
    if returns is None:
        returns = "shots"
    elif returns not in ("shots", "draw", "_exception",
                         "qiskit_circuit", "qiskit_job", "qiskit_result"):
        raise ValueError("`returns` shall be None, 'shots', 'draw', " +
                         "'qiskit_circuit', 'qiskit_job', 'qiskit_result' or '_exception'")

    import_error = None
    try:
        with warnings.catch_warnings():
            warnings.simplefilter("ignore")
            from qiskit import Aer, QuantumCircuit, execute
    except Exception as e:
        import_error = e

    if import_error:
        if returns == "_exception":
            return e
        if isinstance(import_error, ImportError):
            raise ImportError("Cannot import qiskit. To use this backend, please install qiskit." +
                              " `pip install qiskit`.")
        else:
            raise ValueError("Unknown error raised when importing qiskit. To get exception, " +
                             'run this backend with arg `returns="_exception"`')
    else:
        if returns == "_exception":
            return None
        qk_circuit = QuantumCircuit.from_qasm_str(qasm)
        if returns == "qiskit_circuit":
            return qk_circuit
        if returns == "draw":
            return qk_circuit.draw(**kwargs)
        if shots is None:
            shots = 1024
        if qiskit_backend is None:
            qiskit_backend = Aer.get_backend("qasm_simulator")
        job = execute(qk_circuit, backend=qiskit_backend, shots=shots, **kwargs)
        if returns == "qiskit_job":
            return job
        result = job.result()
        if returns == "qiskit_result":
            return result
        counts = Counter({bits[::-1]: val for bits, val in result.get_counts().items()})
        return counts

ibmq_backend = generate_backend(_qasm_runner_qiskit)

from blueqat import BlueqatGlobalSetting
BlueqatGlobalSetting.register_backend("myibmq", ibmq_backend)
Circuit().h[0].m[:].run(backend="myibmq",returns="draw",output='mpl')

image.png

plot histogram

プロットする

import matplotlib.pyplot as plt
import numpy as np
%matplotlib inline

def myplot_histogram(sv,n,figsize=(20,10),fontsize=24):
    probs = np.abs(sv)**2
    ## z方向に射影測定した時に得られる可能性があるビット列
    z_basis = [format(i,"b").zfill(n) for i in range(probs.size)]

    plt.figure(figsize=figsize)
    plt.xlabel("states",fontsize=fontsize)
    plt.ylabel("probability(%)",fontsize=fontsize)
    plt.xticks(fontsize=fontsize)
    plt.yticks(fontsize=fontsize)
    plt.bar(z_basis, probs*100)
    plt.show()

image.png

Applications

Quantum kernel

from blueqat import Circuit
import numpy as np
from sklearn.svm import SVC
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import matplotlib.pyplot as plt

def data_encoding(data):
    circuit = Circuit(2)
    for i,x in enumerate(data):
        circuit.rx(x)[i]
    return circuit

def make_circuit(data0,data1):
    subcircuit0 = data_encoding(data0)
    subcircuit1 = data_encoding(data1).dagger()
    circuit = subcircuit0 + subcircuit1
    return circuit

def kernel(data0,data1,shots=1024):
    circuit = make_circuit(data0,data1)
    sv = circuit.run(backend="numpy")
    prob = np.abs(sv)**2
    kernel_value = prob[0]
    return kernel_value

def kernel_matrix(A, B):
    """Compute the matrix whose entries are the kernel
       evaluated on pairwise data from sets A and B."""
    return np.array([[kernel(a, b) for b in B] for a in A])

np.random.seed(42)

X, y = load_iris(return_X_y=True)

# pick inputs and labels from the first two classes only,
# corresponding to the first 100 samples
X = X[0:100,0:2]
y = y[0:100]

# scaling the inputs is important since the embedding we use is periodic
scaler = StandardScaler().fit(X)
X_scaled = scaler.transform(X)

# scaling the labels to -1, 1 is important for the SVM and the
# definition of a hinge loss
y_scaled = 2 * (y - 0.5)

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y_scaled)

mat = kernel_matrix(X_train,X_train)
fig, ax = plt.subplots()
ax.imshow(mat)
plt.show()

image.png

svm = SVC(kernel=kernel_matrix).fit(X_train, y_train)
predictions = svm.predict(X_test)
accuracy_score(predictions, y_test)
1
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
1
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?