Why not login to Qiita and try out its useful features?

We'll deliver articles that match you.

You can read useful information later.

0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

nvidia-docker環境構築手順メモ

Last updated at Posted at 2020-05-16

GeForce RTX 2060を導入し、サーバーを新調(HP->Lenovo)したので、
nvidia-dockerのインストール手順を再度メモ。
※注意!!tf,cuda,cudnnのバージョンで不整合が発生中

# lspci | grep VGA
02:00.0 VGA compatible controller: Matrox Electronics Systems Ltd. MGA G200e [Pilot] ServerEngines (SEP1) (rev 42)
04:00.0 VGA compatible controller: NVIDIA Corporation TU106 [GeForce RTX 2070] (rev a1)
# lsmod | grep nouveau
nouveau              1898794  0 
mxm_wmi                13021  1 nouveau
wmi                    21636  2 mxm_wmi,nouveau
video                  24538  1 nouveau
i2c_algo_bit           13413  2 mgag200,nouveau
drm_kms_helper        186531  2 mgag200,nouveau
ttm                    96673  2 mgag200,nouveau
drm                   456166  5 ttm,drm_kms_helper,mgag200,nouveau
# vi /etc/modprobe.d/blacklist-nouveau.conf
root@st250 ~]# cat /etc/modprobe.d/blacklist-nouveau.conf
blacklist nouveau
options nouveau modeset=0
# dracut --force
# reboot
# yum install -y gcc make kernel-devel
# curl -O http://jp.download.nvidia.com/XFree86/Linux-x86_64/440.82/NVIDIA-Linux-x86_64-440.82.run
# chmod 755 NVIDIA-Linux-x86_64-440.82.run
# ./NVIDIA-Linux-x86_64-440.82.run

kernel-develよりkernelのバージョンが古かったのでkernelをアップ

# yum update -y kernel
# reboot
# ./NVIDIA-Linux-x86_64-440.82.run
# nvidia-smi
Sat May 16 15:26:25 2020       
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.82       Driver Version: 440.82       CUDA Version: 10.2     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  GeForce RTX 2070    Off  | 00000000:04:00.0 Off |                  N/A |
| 29%   48C    P0    26W / 175W |      0MiB /  7982MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+
                                                                               
+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+
# curl -O http://developer.download.nvidia.com/compute/cuda/10.2/Prod/local_installers/cuda_10.2.89_440.33.01_linux.run
# chmod 755 cuda_10.2.89_440.33.01_linux.run
# ./cuda_10.2.89_440.33.01_linux.run

Driverはインストール済みなので、cudaだけインストール

# yum install -y yum-utils
# yum-config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo
# yum install -y yum-utils device-mapper-persistent-data lvm2
# yum install -y docker-ce
# yum-config-manager --add-repo https://nvidia.github.io/nvidia-docker/centos7/nvidia-docker.repo
# yum install -y nvidia-docker2
# systemctl enable docker
# systemctl start docker
# vi /etc/docker/daemon.json
# cat /etc/docker/daemon.json
{
    "default-runtime": "nvidia",
    "runtimes": {
        "nvidia": {
            "path": "nvidia-container-runtime",
            "runtimeArgs": []
        }
    }
}
# systemctl stop docker
# systemctl start docker
# curl -L https://github.com/docker/compose/releases/download/1.21.2/docker-compose-$(uname -s)-$(uname -m) -o /usr/local/bin/docker-compose
# chmod +x /usr/local/bin/docker-compose
0
0
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up

Comments

No comments

Let's comment your feelings that are more than good

0
0

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?