本記事は、ゼロから作るDeep Learningの学習メモです。
要点
- 活性化関数:
入力信号の総和がどのように活性化するか(発火するか)を決定する役割を持つ。
パーセプトロンでは閾値を境に出力が切り替わる「ステップ関数」が使用されるが、ニューラルネットワークでは滑らかな曲線を描く「シグモイド関数」や「ReLU関数」などが用いられる。
隠れ層の活性化関数はh()で表し、出力層の活性化関数はσ()で表す。 - 行列の内積を用いることで、各ニューロンでの計算を1階層分ひとまとめに行う事ができる。
3層ニューロンネットワーク図
シグモイド関数
h(x) = \frac{1}{1+ \mathrm{e}^{-x}}
各ニューロンの変換式
a = w_1x_1+w_2x_2+b
z = h(a)
※x:入力 w:重み b:バイアス a:入力信号の総和 h():活性化関数
3層ニューロンネットワークを実装する
3layered_neuralnetwork.py.py
import numpy as np
import matplotlib.pyplot as plt
# 重みとバイアスの初期化
def init_network():
network = {}
# 1層目
network['W1'] = np.array([[0.1, 0.3, 0.5], [0.2, 0.4, 0.6]])
network['b1'] = np.array([0.1, 0.2, 0.3])
# 2層目
network['W2'] = np.array([[0.1, 0.4], [0.2, 0.5], [0.3, 0.6]])
network['b2'] = np.array([0.1, 0.2])
# 3層目
network['W3'] = np.array([[0.1, 0.3], [0.2, 0.4]])
network['b3'] = np.array([0.1, 0.2])
return network
# 入力→出力
def forward(network, x):
W1, W2, W3 = network['W1'], network['W2'], network['W3']
b1, b2, b3 = network['b1'], network['b2'], network['b3']
# 1層目
a1 = np.dot(x, W1) +b1 # A = XW +B
z1 = sigmoid(a1) # Z = h(A)
# 2層目
a2 = np.dot(z1, W2) +b2
z2 = sigmoid(a2)
# 3層目
a3 = np.dot(z2, W3) +b3
y = identity_function(a3) # 最後の層のみ活性化関数が異なる
return y
# シグモイド関数(活性化関数)
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# 恒等関数(活性化関数)
def identity_function(x):
return x
# 以下動作確認
network = init_network()
x = np.array([1.0, 0.5])
y = forward(network, x)
print(y) # [0.31682708 0.69627909]