0
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?

More than 3 years have passed since last update.

[Python]セミラグランジュ法のメソッド

Posted at

移流方程式解くプログラムがネット上に少なかったのと、メソッド化されているものは日英で探した時に無かった(もしくはバグってるやつ)ので作りました。

#https://github.com/christian512/SemiLagPy/blob/master/advection1D.ipynb
#これを参考にした。

import numpy as np
import matplotlib.pyplot as plt

class SemiLagrangian1D:
    """
    SemiLagrangian scheme for periodic 1D problems.
    """
    def __init__(self,x,y,u,dt):
        """
        Initizalizes the SemiLagrangian object given initial configuration
        x : x positions (must be equidistant)
        y : variable at all x positions at time t
        u : speed of advection
        dt: time step
        """
        # Check dimensions
        assert x.shape[0] == y.shape[0], "x and y have different length"
        # Get the x stepsize
        dx = x[1] - x[0]
        # check if x is equidistant
        assert x[-1] == x[0] + dx*(x.shape[0]-1), "x array not equidistant"
        # Set class variables
        self.x = x
        self.y = y
        self.u = u
        self.dt = dt
        self.dx = dx

    def cubic_evolve(self,nt=1):
        """
        Propagates the variable using a cubic interpolation scheme.
        nt: number of time stepsize
        """
        # loop through time steps
        for l in range(nt):
            # temporary array
            y_temp = np.zeros(self.y.shape[0])
            # loop through array
            for i in range(self.y.shape[0]):
                # idx left to departure point
                x_dep = self.x[i]-self.u*self.dt
                j = int(np.floor(x_dep/self.dx))
                # alpha
                a = (self.x[i]-self.u*self.dt - j*self.dx)/self.dx
                # calculate next time step
                f = lambda x: x % self.y.shape[0] if x >= self.y.shape[0] else x
                y_temp[i] = - a * (1-a)*(2-a)/6 * self.y[f(j-1)]
                y_temp[i] += (1-a**2)*(2-a)/2 * self.y[f(j)]
                y_temp[i] += a*(1+a)*(2-a)/2 * self.y[f(j+1)]
                y_temp[i] -= a*(1-a**2)/6 * self.y[f(j+2)]
            self.y = np.copy(y_temp)
        return self.y

    def linear_interporation(self,nt=1):
        for l in range(nt):
            # temporary array
            y_tmp = np.zeros(self.y.shape[0])
            for i in range(1,NX-1):
                x_tmp = self.x[0]+i*self.dx
                x_tmp -= self.u*self.dt

                ib = int((x_tmp-self.x[0])/self.dx)
                if ib < 0: ib = 0
                if ib >= len(self.x): ib = NX-2
                distance = (x_tmp - ib*self.dx)/DX

                y_tmp[i] = (1-distance)*self.y[ib]+distance*self.y[ib+1]

        self.y = np.copy(y_tmp)
        return self.y





L = 5 # Domain length
NX = 1000 # Number of grid points
X = np.linspace(0,L,num=NX) # Array of grid points
DX = X[1] - X[0] # spatial grid point distance
DT = 0.01 # time step size
NT = 1000 # number of time steps
CA = (1 + 0.02*np.sqrt(130)) # advection speed
print('Courant= ' + str(CA*DT/DX))

# Sine function
F_ini2 = np.zeros(X.shape[0])
F_ini2[0:int(X.shape[0]/5)] = np.sin(np.pi*X[0:int(X.shape[0]/5)])

# Plotting
# plt.plot(X,F_ini2,label='Sine function')
# plt.legend()
# plt.show()

# Create array for storing evolution of F(x,t)
F_arr = np.zeros([NT,X.shape[0]])
F_arr[0,:] = np.copy(F_ini2)
# Create SemiLagrangian object
sl = SemiLagrangian1D(X,F_arr[0,:],CA,DT)

# Calculate the variable for all time steps using semi-lagrangian
for i in range(1,NT):
    F_arr[i,:] = sl.cubic_evolve(nt=1)
    #F_arr[i,:] = sl.linear_interporation(nt=i)
#ans = sl.linear_interporation(nt=300)

# Plot initial vs. evolution
# print(F_arr[300,:])
print("f(0.5,t_0) = {}".format(F_arr[0,int(X.shape[0]/10)]))
print("f(x1,t1) = {}".format(F_arr[300,int(X.shape[0]/10) + int(-CA*X.shape[0]/5)]))
plt.plot(X,F_arr[0,:],label='Initial')
plt.plot(X,F_arr[300,:],label='Evolved')
plt.legend()
plt.show()


0
4
0

Register as a new user and use Qiita more conveniently

  1. You get articles that match your needs
  2. You can efficiently read back useful information
  3. You can use dark theme
What you can do with signing up
0
4

Delete article

Deleted articles cannot be recovered.

Draft of this article would be also deleted.

Are you sure you want to delete this article?