過去のHPO(Hyperparameter Optimization)に関する先行事例をAutomated Machine Learningから持ってきました。
- King, R., Feng, C., Sutherland, A.: Statlog: comparison of classification algorithms on large
real-world problems. Applied Artificial Intelligence an International Journal 9(3), 289–333
(1995) - Lee, D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.): Proceedings of
the 30th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’16) (2016) - Michie, D., Spiegelhalter, D., Taylor, C., Campbell, J. (eds.): Machine Learning, Neural and
Statistical Classification. Ellis Horwood (1994) - Ripley, B.D.: Statistical aspects of neural networks. Networks and chaos—statistical and
probabilistic aspects 50, 40–123 (1993) - Escalante, H., Montes, M., Sucar, E.: Particle Swarm Model Selection. Journal of Machine
Learning Research 10, 405–440 (2009) - Mantovani, R., Horvath, T., Cerri, R., Vanschoren, J., Carvalho, A.: Hyper-Parameter Tuning
of a Decision Tree Induction Algorithm. In: 2016 5th Brazilian Conference on Intelligent
Systems (BRACIS). pp. 37–42. IEEE Computer Society Press (2016) - Olson, R., La Cava, W.,Mustahsan, Z., Varik, A., Moore, J.: Data-driven advice for applying
machine learning to bioinformatics problems. In: Proceedings of the Pacific Symposium in
Biocomputing 2018. pp. 192–203 (2018) - Sanders, S., Giraud-Carrier, C.: Informing the Use of Hyperparameter Optimization Through
Metalearning. In: Gottumukkala, R., Ning, X., Dong, G., Raghavan, V., Aluru, S., Karypis,
G., Miele, L., Wu, X. (eds.) 2017 IEEE International Conference on Big Data (Big Data).
IEEE Computer Society Press (2017) - Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K.: Auto-WEKA: combined selection and
hyperparameter optimization of classification algorithms. In: Dhillon, I., Koren, Y., Ghani,
R., Senator, T., Bradley, P., Parekh, R., He, J., Grossman, R., Uthurusamy, R. (eds.) The
19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’13). pp. 847–855. ACM Press (2013) -
- Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google Vizier: A
service for black-box optimization. In: Matwin, S., Yu, S., Farooq, F. (eds.) Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and DataMining
(KDD). pp. 1487–1495. ACM Press (2017)
- Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google Vizier: A
ここからはサービスの事例
- Amazon: Automatic model tuning (2018), https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html
- Li, F.F., Li, J.: Cloud AutoML: Making AI accessible to every business (2018), https://www.blog.google/products/google-cloud/cloud-automl-making-ai-accessible-every-business/
- SIGOPT: Improve ML models 100x faster (2018), https://sigopt.com/
何か発表する時の裏取りに使おう。